Exploiting symmetry in SMT problems

David Déharbe!, Pascal Fontaine?,
Stephan Merz?, and Bruno Woltzenlogel Paleo®*

! Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
david@dimap.ufrn.br
2 University of Nancy and INRIA, Nancy, France
{Pascal.Fontaine,Stephan.Merz}@inria.fr
3 Technische Universitat Wien
bruno.wp@gmail.com

Abstract. Methods exploiting problem symmetries have been very suc-
cessful in several areas including constraint programming and SAT solv-
ing. We here recast a technique to enhance the performance of SMT-
solvers by detecting symmetries in the input formulas and use them to
prune the search space of the SMT algorithm. This technique is based
on the concept of (syntactic) invariance by permutation of constants.
An algorithm for solving SMT by taking advantage of such symmetries
is presented. The implementation of this algorithm in the SMT-solver
veriT is used to illustrate the practical benefits of this approach. It re-
sults in a significant improvement of veriT’s performances on the SMT-
LIB benchmarks that places it ahead of the winners of the last editions
of the SMT-COMP contest in the QF_UF category.

1 Introduction

While the benefit of symmetries has been recognized for the satisfiability problem
of propositional logic [15], for constraint programming [9], and for finite model
finding [4,7,11], SMT solvers (see [3] for a detailed account of techniques used
in SMT solvers) do not yet fully exploit symmetries. Audemard et al. [1] use
symmetries as a simplification technique for SMT-based model-checking, and
the SMT solver HTP [14] uses some symmetry-based heuristics, but current
state-of-the-art solvers do not exploit symmetries to decrease the size of the
search space.

In the context of SMT solving, a frequent source of symmetries is when some
terms take their value in a given finite set of totally symmetric elements. The
idea here is very simple: given a formula G invariant by all permutations of some
uninterpreted constants cg,...,c,, for any model M of G, if term ¢ does not
contain these constants and M satisfies ¢ = ¢; for some ¢, then there should be a
model in which ¢ equals ¢g. While checking for unsatisfiability, it is thus sufficient
to look for models assigning ¢ and c¢g to the same value. This simple idea is very

* This work was partly supported by the ANR DeCert project and the INRIA-CNPq
project SMT-SAVeS.

effective, especially for formulas generated by finite instantiations of quantified
problems. We have implemented our technique in a moderately efficient SMT
solver (veriT [5]), and with this addition it outperforms the winners of recent
editions of the SMT-COMP [2] contest in the QF_UF category. This indicates
that detecting symmetries, automatically or based on hints in the input, can be
important for provers to reduce the search space that they have to consider, just
as some constraint solvers already take symmetry information into account.

Outline. We first introduce notations, then define symmetries and give the main
theorem that allows us to reduce the search space. We recast an algorithm to
exploit such symmetries in the context of SMT-solvers. Next, the classical pi-
geonhole problem is analyzed from the perspective of symmetries. Finally, some
experimental results, based on the SMT-LIB, are provided and discussed.

2 Notations

A many-sorted first-order language is a tuple £ = (S, V, F, P, d) such that S is
a countable non-empty set of disjoint sorts (or types), V is the (countable) union
of disjoint countable sets V. of variables of sort 7, F is a countably infinite set of
function symbols, P is a countably infinite set of predicate symbols, and d assigns
a sort in ST to each function symbol f € F and a sort in S* to each predicate
symbol p € P. Nullary predicates are propositions, and nullary functions are
constants. The set of predicate symbols is assumed to contain a binary predicate
=, for every sort 7 € S; since the sort of the equality can be deduced from the
sort of the arguments, the symbol = will be used for equality of all sorts. Terms
and formulas over the language £ are defined in the usual way.

An interpretation for a first-order language £ is a pair Z = (D, I) where D
assigns a non-empty domain D, to each sort 7 € S and I assigns a meaning to
each variable, function, and predicate symbol. As usual, the identity is assigned
to the equality symbol. By extension, an interpretation Z defines a value Z[t] in
D, for every term ¢ of sort 7, and a truth value Z[p] in {T, L} for every formula
. A model of a formula ¢ is an interpretation Z such that Z[p] = T. The
notation Zg, /., .., /r, stands for the interpretation that agrees with Z, except
that it associates the elements r; of appropriate sort to the symbols s;.

For convenience, we will consider that a theory is a set of interpretations for
a given many-sorted language. The theory corresponding to a set of first-order
axioms is thus naturally the set of models of the axioms. A theory may leave
some predicates and functions uninterpreted: a predicate symbol p (or a function
symbol f) is uninterpreted in a theory T if for every interpretation Z in 7 and
for every predicate ¢ (resp., function g) of suitable sort, Z,,/, belongs to T (resp.,
Tf/qg € T). It is assumed that variables are always uninterpreted in any theory,
with a meaning similar to uninterpreted constants. Given a theory 7, a formula
@ is T-satisfiable if it has a model in 7. Two formulas are T-equisatisfiable if
one formula is 7 -satisfiable if and only if the other is. A formula ¢ is a logical
consequence of a theory T (noted T = ¢) if every interpretation in T is a model

of p. A formula ¢ is a T-logical consequence of a formula v, if every model
M € T of ¢ is also a model of p; this is noted ¢ =7 . Two formulas ¢ and ¢
are T-logically equivalent if they have the same models in 7.

3 Defining symmetries

We now formally introduce the concept of formulas invariant w.r.t. permuta-
tions of uninterpreted symbols and study the T-satisfiability problem of such
formulas. Intuitively, the formula ¢ is invariant w.r.t. permutations of uninter-
preted symbols if, modulo some syntactic normalization, it is left unchanged
when the symbols are permuted. Formally, the notion of permutation operators
depends on the theory 7 for which T-satisfiability is considered, because only
uninterpreted symbols may be permuted.

Definition 1. A permutation operator P on a set R C F UP of uninterpreted
symbols of a language L = (S,V, F, P, d) is a sort-preserving bijective map from
R to R, that is, for each symbol s € R, the sorts of s and P[s] are equal.
A permutation operator homomorphically extends to an operator on terms and
formulas on the language L.

As an example, a permutation operator on a language containing the three con-
stants cg, ¢1, co of identical sort, may map ¢y to ¢1, ¢; to ¢ and ¢y to ¢p.

To formally define that a formula is invariant by a permutation operator
modulo some rewriting, the concept of T-preserving rewriting operator is intro-
duced.

Definition 2. A T-preserving rewriting operator R is any transformation op-
erator on terms and formulas such that T |= t = RIt] for any term, and
T E ¢ & R[p] for any formula ¢. Moreover, for any permutation operator
P, for any term and any formula, Ro P o R and R o P should yield identical
results.

The last condition of Def. 2 will be useful in Lemma 6. Notice that R must
be idempotent, since Ro P o R and P o R should be equal for all permutation
operators, including the identity permutation operator.

To better motivate the notion of a 7-preserving rewriting operator, consider
a formula containing a clause t = ¢y Vt = ¢;. Obviously this clause is symmetric
if t does not contain the constants ¢y and ¢;. However, a permutation operator
on the constants cg and ¢; would rewrite the formula into t = ¢; V¢t = ¢,
which is not syntactically equal to the original one. Assuming the existence of
some ordering on terms and formulas, a typical T-preserving rewriting operator
would reorder arguments of all commutative symbols according to this ordering.
With appropriate data structures to represent terms and formulas, it is possible
to build an implementation of this 7-preserving rewriting operator that runs
in linear time with respect to the size of the DAG or tree that represents the
formula.

Definition 3. Given a T -preserving rewriting operator R, a permutation oper-
ator P on a language L is a symmetry operator of a formula ¢ (a termt) on the

language L w.r.t. R if R[P[y]] and R[p] (resp., R[P[t]] and R[t]) are identical.

Notice that, given a permutation operator P and a linear time 7T -preserving
rewriting operator R satisfying the condition of Def. 3, it is again possible to
check in linear time if P is a symmetry operator of a formula w.r.t. R. In the
following, we will assume a fixed rewriting operator R and say that P is a
symmetry operator if it is a symmetry operator w.r.t. R.

Symmetries could alternatively be defined semantically, stating that a per-
mutation operator P is a symmetry operator if P[y] is T-logically equivalent to
. The above syntactical symmetry implies of course the semantical symmetry.
But the problem of checking if a permutation operator is a semantical symmetry
operator has the same complexity as the problem of unsatisfiability checking.
Indeed, consider the permutation P such that P[cg] = ¢; and Plci] = ¢, and a
formula ¢ defined as ¢ = co Ac # ¢; Ay’ (where ¢, ¢y and ¢; do not occur in ¢’).
To check if the permutation operator P is a semantical symmetry operator of v,
it is necessary to check if formulas ¢ and P[t)] are logically equivalent, which is
only the case if ¢’ is unsatisfiable.

Definition 4. A term ¢ (a formula ¢) is invariant w.r.t. permutations of unin-
terpreted constants cg, ..., c, if any permutation operator P on cg,...,cp @S a
symmetry operator of t (resp. p).

The main theorem follows: it allows one to introduce a symmetry breaking
assumption in a formula that is invariant w.r.t. permutations of constants. This
assumption will decrease the size of the search space.

Theorem 5. Consider a theory T, uninterpreted constants cg, . . ., Cpn, a formula
@ that is invariant w.r.t. permutations of ¢;, ..., Cn, and a term t that is invariant
w.r.t. permutations of ¢;,...,cn. If o ET t =co V...Vt = ¢y, then p is T-
satisfiable if and only if

O =qet pA(t=coV...Vt=g¢)

is also T -satisfiable. Clearly, ¢’ is invariant w.r.t. permutations of ¢i11,...,Cn.-

Proof: Let us first prove the theorem for ¢ = 0.

Assume that ¢ At = ¢g is T-satisfiable, and that M € T is a model of
@ At =cp; M is also a model of ¢, and thus ¢ is T-satisfiable.

Assume now that ¢ is T-satisfiable, and that M € T is a model of p. By
assumption there exists some j € {0,...,n} such that M = t = ¢;, hence
M = ¢ At = ¢;. In the case where j = 0, M is also a model of p At = ¢o. If
j # 0, consider the permutation operator P that swaps ¢y and ¢;. Notice (this
can be proved by structural induction on formulas) that, for any formula ,
M | 4 if and only if Mcy /4, c;/a, F P[Y], where dy and d; are respectively
Mco] and Mc;]. Choosing @ =qet ¢ At = c¢;, it follows that Mcy /4, c;/d, F
Plp ANt = ¢j], and thus M, q; ¢, 74, F Plp] At = co since t is invariant w.r.t.

permutations of ¢y, ..., ¢,. Furthermore, since ¢ is invariant w.r.t. permutations
of co,...,cn, R[P[p]] is ¢ for the fixed T-preserving rewriting operator. Since
R is T-preserving, Mcy/a;.¢;/d, F Pl] if and only if Mcy /4, ¢, /0, F RIP[¢]],
that is, if and only if Mcy/4;.c;/d, F . Finally Mcy/aq; c;7d, E ¢ At = co,
and M, /d;.¢;/d, belongs to T since ¢o and ¢; are uninterpreted. The formula
@ At = ¢ is thus T-satisfiable.

For the general case, notice that ¢” =qef @ At = o V...Vt = ¢;_1) is
invariant w.r.t. permutations of ¢;,...,¢,, and " Ert=¢ V...Vt =c¢,. By
the previous case (applied to the set of constants ¢, ..., ¢, instead of cg, ..., ¢p),
¢" is T-equisatisfiable to ¢ A=(t =¢o V...Vt =c¢;_1) At = ¢;. Formulas ¢ and

(pA=(t=coV...Vit=ci1))V(pAt=coV...Vt=rci_1))

are T-logically equivalent. Since AV B and A’V B are T -equisatisfiable whenever
A and A’ are T-equisatisfiable, ¢ is T-equisatisfiable to

(pA=(t=coV...Vi=ci)At=c)V(pA(t=coV...VI=ci1)).
This last formula is T-logically equivalent to
WA({t=coV...Vt=c1 V=)

and thus the theorem holds. O

Checking if a permutation is syntactically equal to the original term or for-
mula can be done in linear time. And checking if a formula is invariant w.r.t.
permutations of given constants is also linear: only two permutations have to be
considered instead of the n! possible permutations.

Lemma 6. A formula ¢ is invariant w.r.t. permutations of constants cq, ..., cy,
if both permutation operators

— Peire such that Perelci) = ¢i—1 for i € {1,...,n} and Pec[co] = cn,
— Puyap such that Puyaplco] = ¢1 and Pswaplci] = co

are symmetry operators for p.

Proof: First notice that any permutation operator on cg,...,c, can be written
as a product of Peyc and Psyap, because the group of permutations of co, ..., ¢y
is generated by the circular permutation and the swapping of ¢y and ¢;. Any
permutation P of cg, ..., ¢, can then be rewritten as a product P;o---oP,,, where
P; € {Peivc; Pswap} for i € {1,...,m}. It remains to prove that any permutation
operator P o--- o0 P,, is indeed a symmetry operator. This is done inductively.
For m =1 this is trivially true. For the inductive case, assume P; o---0 P,,_1
is a symmetry operator of ¢, then

R[(Pyo...oPp)¢]]

R[Py[(Pro-+- 0 Pro1)[oll]

[
[Pr[R[(Pr o0 Prn1)[el]]]
[
[

R
R[Pn[el]
R

AS
£5

1 P := guess_permutations(y);
2 foreach {co,...,cn} € P do
3 if invariant_by_permutations(p, {co,...,cn}) then
4 T := select_terms(p, {co, ... ,cn}) ;
5 cts =0 ;
6 while T' # O A |cts| < n do
7 t := select_most_promising_term(T, @) ;
8 T:=T\{t};
9 cts := cts U used_in(t,{co,...,cn}) ;
10 let c € {co,...,cn} \ cts;
11 cts == cts U {c};
12 if cts # {co,...,cn} then
13 ‘ W::SD/\(Vciectst:ci);
14 end
15 end
16 end
17 end
18 return o;

Algorithm 1: A symmetry breaking preprocessor.

where = stands for syntactical equality. The first equality simply expands the
definition of the composition operator o, the second comes from the definition of
the T-preserving rewriting operator R, the third uses the inductive hypothesis,
and the last uses the fact that P, is either P or Pswap, that is, also a symmetry
operator of . O

4 SMT with symmetries: an algorithm

Algorithm 1 applies Theorem 5 in order to exhaustively add symmetry break-
ing assumptions on formulas. First, a set of sets of constants is guessed (line 1)
from the formula ¢ by the function guess_permutations; each such set of con-
stants {co, ..., c,} will be successively considered (line 2), and invariance of ¢
w.r.t. permutations of {cg,...,c,} will be checked (line 3). Notice that function
guess_permutations(p) gives an approximate solution to the problem of partition-
ing constants of ¢ into classes {cy,...,c,} of constants such that ¢ is invariant
by permutations. If the 7-preserving rewriting operator R is given, then this
is a decidable problem. However we have a feeling that, while the problem is
still polynomial (it suffices to check all permutations with pairs of constants),
only providing an approximate solution is tractable. Function guess_permutations
should be such that a small number of tentative sets are returned. Every ten-
tative set will be checked in function invariant_by_permutations (line 3); with
appropriate data structures the test is linear with respect to the size of ¢ (as a
corollary of Lemma 6).

As a concrete implementation of function guess_permautations(y), partitioning
the constants in classes that all give the same values to some functions f(¢p, c¢)
works well in practice, where the functions f compute syntactic information that
is unaffected by permutations, i.e. f (¢, ¢) and f(P[y], P|c]) should yield the same
results. Obvious examples of such functions are the number of appearances of ¢
in ¢, or the maximal depth of ¢ within an atom of ¢, etc. The classes of constants
could also take into account the fact that, if ¢ is a large conjunction, with ¢y # ¢;
as a conjunct (¢o and ¢; in the same class), then it should have ¢; # ¢; or ¢; # ¢;
as a conjunct for every pair of different constants ¢;, ¢; contained in the class
of ¢ and c;. In veriT we use a straightforward detection of clusters cg,...,c,
of constants such that there exists an inequality ¢; # c¢; for every i # j as a
conjunct in the original formula ¢.

Line 3 checks the invariance of formula ¢ by permutation of cg,...,c,. In
veriT, function invariant_by_permutations(p, {co, . .., ¢y }) simply builds, in linear
time, the result of applying a circular permutation of ¢y, ..., ¢, to ¢, and the
result of applying a permutation swapping two constants (for instance ¢g and ¢;).
Both obtained formulas, as well as the original one, are normalized by a rewriting
operator sorting arguments of conjunctions, disjunctions, and equality according
to an arbitrary term ordering. The three formulas should be syntactically equal
(this is tested in constant time thanks to the maximal sharing of terms in veriT)
for invariant_by_permutations(p, {co, .. .,cn}) to return true.

Lines 4 to 15 concentrate on breaking the symmetry of {co,...,c,}. First a
set of terms

Tg{t|g0|:t:co\/...\/t=cn}

is computed. Again, function select_terms(p,{co,...,cn}) returns an approxi-
mate solution to the problem of getting all terms ¢ such that t = ¢y V...Vt = ¢p;
an omission in 7 would simply restrict the choices for a good candidate on line 7,
but would not jeopardize soundness. Again, this is implemented in a straight-
forward way in veriT.

The loop on lines 6 to 15 introduces a symmetry breaking assumption on
every iteration (except perhaps on the last iteration, where a subsumed assump-
tion would be omitted). A candidate symmetry-breaking term ¢ € T is chosen
by the call select_most_promising_term(T,). The efficiency of the SMT solver
is very sensitive to this selection function. If the term t is not important for
unsatisfiability, then the assumption would simply be useless. In veriT, the se-
lected term is the most frequent constant-free term (i.e. the one with the highest
number of clauses in which it appears), or, if no constant-free terms remains, the
one with the largest ratio of the number of clauses in which the term appears
over the number of constants that will be required to add to cts on line 11; so
actually, select_most_promising_term also depends on the set cts.

Function wused_in(t,{co,...,c,}) returns the set of constants in term ¢. If
the term contains constants in {co,...,c,} \ cts, then only the remaining con-
stants can be used. On line 10, one of the remaining constants c¢ is chosen non-
deterministically: in principle, any of these constants is suitable, but the choice

may take into account accidental features that influence the decision heuristics
of the SMT solver, such as term orderings.

Finally, if the symmetry breaking assumption \/CieCts t = ¢; is not subsumed
(i.e. if c¢ts # {co,...,cn}), then it is conjoined to the original formula.

Theorem 7. The formula ¢ obtained after running Algorithm 1 is T -satisfiable
if and only if the original formula o is T -satisfiable.

Proof: If the obtained ¢ is T-satisfiable then ¢ is T-satisfiable since ¢ is a
conjunction of ¢y and other formulas (the symmetry breaking assumptions).
Assume that ¢q is T-satisfiable, then ¢ is T-satisfiable, as a direct conse-
quence of Theorem 5. In more details, in lines 6 to 15, ¢ is always invariant by
permutation of constants {co,...,c,} \ cts, and more strongly, on line 13, ¢ is
invariant by permutations of constants in cts as defined in line 9. In lines 4 to
15 any term ¢ € T is such that ¢ 7t = ¢ V...Vt = ¢,. On lines 10 to
14, t is invariant with respect to permutations of constants in cts as defined in
line 9. The symmetry breaking assumption conjoined to ¢ in line 13 is, up to the
renaming of constants, the symmetry breaking assumption of Theorem 5 and all
conditions of applicability of this theorem are fulfilled. a

5 SMT with symmetries: an example

A classical problem with symmetries is the pigeonhole problem. Most SMT or
SAT solvers require exponential time to solve this problem; these solvers are
strongly linked with the resolution calculus, and an exponential lower bound for
the length of resolution proofs of the pigeon-hole principle was proved in [10].
Polynomial-length proofs are possible in stronger proof systems, as shown by
Buss [6] for Frege proof systems. An extensive survey on the proof complexity
of pigeonhole principles can be found in [13]. Polynomial-length proofs are also
possible if the resolution calculus is extended with symmetry rules (as in [12]
and in [17]).

We here recast the pigeonhole problem in the SMT language and show that
the preprocessing introduced previously transforms the series of problems solved
in exponential time with standard SMT solvers into a series of problems solved
in polynomial time. This toy problem states that it is impossible to place n + 1
pigeons in n holes. We introduce n uninterpreted constants hq, ..., h, for the n
holes, and n + 1 uninterpreted constants p1, ..., p,+1 for the n+ 1 pigeons. Each
pigeon is required to occupy one hole:

piZhl\/...\/piZhn

It is also required that distinct pigeons occupy different holes, and this is ex-
pressed by the clauses p; # p; for 1 <4 < j <n+ 1. One can also assume that
the holes are distinct, i.e., hy # h; for 1 <14 < j < n, although this is not needed
for the problem to be unsatisfiable.

100 F T T T T T T T T]
r veriT —+—
veriT w/o sym —X—
CVC3 —k—
MathSAT —F—

OpenSMT —l— |
Yices —5—
Z3 —@—

10 -

time (in seconds)

0.1+

0.01 1111111W

} }
4 6 8 10 12 14 16 18 20
Number of pigeons

Fig. 1. Some SMT solvers and the pigeonhole problem

The generated set of formulas is invariant by permutations of the constants
P1,- -, Pnt+1, and also by permutations of constants hq, ..., h,; very basic heuris-
tics would easily guess this invariance. However, it is not obvious from the pre-
sentation of the problem that h; = p1 V...V h; = pp4q for i € [1..n], so any
standard function select_terms in the previous algorithm will fail to return any
selectable term to break the symmetry; this symmetry of py1,...,p,41 is not di-
rectly usable. It is however most direct to notice that p; = h1 V...V p; = hy;
select_terms in the previous algorithm would return the set of {p1,...,Pn41}-
The set of symmetry breaking clauses could be

p1=Mh
P2 =hi1Vp2=hy
p3="h1Vp3=~haVp3=hs

Pn—1=h1V...Vpyp_1=hy 1

or any similar set of clauses obtained from these with by applying a permuta-
tion operator on p1,...,p,+1 and a permutation operator on hq, ..., h,. Without
need for any advanced theory propagation techniques?, (n + 1) x n/2 conflict
clauses of the form p; # h; V p; # hy V p; # ps with ¢ < j suffice to transform
the problem into a purely propositional problem. With the symmetry break-
ing clauses, the underlying SAT solver then concludes (in polynomial time) the
unsatisfiability of the problem using only Boolean Constraint Propagation.
Without the symmetry breaking clauses, the SAT solver will have to inves-
tigate all n! assignments of n pigeons in n holes, and conclude for each of those
assignments that the pigeon n + 1 cannot find any unoccupied hole.

4 Theory propagation in veriT is quite basic: only equalities deduced from congruence
closure are propagated. p; # h; would never be propagated from p; = h; and p; # p;.

The experimental results, shown in Figure 1, support this analysis: all solvers
(including veriT without symmetry heuristics) time out® on problems of rela-
tively small size, although CVC3 performs significantly better than the other
solvers. Using the symmetry heuristics allows veriT to solve much larger prob-
lems in insignificant times. In fact, the modified version of veriT solves every
instance of the problem with as many as 30 pigeons in less than 0.15 seconds.

6 Experimental results

In the previous section we showed that detecting and breaking symmetries can
sometimes decrease the solving time from exponential to polynomial. We now
investigate its use on more realistic problems by evaluating its impact on SMT-
LIB benchmarks.

Consider a problem on a finite domain of a given cardinality n, with a set of
arbitrarily quantified formulas specifying the properties for the elements of this
domain. A trivial way to encode this problem into quantifier-free first-order logic,
is to introduce n constants {c1, . .., ¢, }, add constraints ¢; # ¢; for 1 <i < j < n,
Skolemize the axioms and recursively replace in the Skolemized formulas the
remaining quantifiers Qx.o(x) by conjunctions (if @ is V) or disjunctions (if @
is 3) of all formulas ¢(¢;) (with 1 <4 < n). All terms should also be such that
t =c¢ V...Vt = ¢, The set of formulas obtained in this way is naturally
invariant w.r.t. permutations of ¢j,...,c,. So the problem in its most natural
encoding contains symmetries that should be exploited in order to decrease the
size of the search space. The QF _UF category of the SMT library of benchmarks
actually contains many problems of this kind.

Figure 2 presents a scatter plot of the running time of veriT on each formula
in the QF_UF category. The z axis gives the running times of veriT without
the symmetry breaking technique presented in this paper, whereas the times
reported on the y axis are the running times of full veriT. It clearly shows a
global improvement; this improvement is even more striking when one restricts
the comparison to unsatisfiable instances (see Figure 3); no significant trend is
observable on satisfiable instances only. We understand this behavior as follows:
for some (not all) satisfiable instances, adding the symmetry breaking clauses
“randomly” influences the decision heuristics of the SAT solver in such a way
that it sometimes takes more time to reach a satisfiable assignment; in any way,
if there is a satisfiable assignment, then all permutations of the uninterpreted
constants (i.e. the ones for which the formula is invariant) are also satisfiable
assignments, and there is no advantage in trying one rather than an other. For
unsatisfiable instances, if terms breaking the invariance play a role in the un-
satisfiability of the problem, then adding the symmetry breaking clauses always
reduces the number of cases to consider, potentially by a factor of n™/n! (where
n is the number of constants), and have a negligible impact if the symmetry
breaking terms play no role in the unsatisfiability.

® The timeout was set to 120 seconds, using Linux 64 bits on Intel(R) Xeon(R) CPU
E5520 at 2.27GHz, with 24 GBytes of memory.

100

veriT (in's)

PR AR A A0
. Ss Nt
.

0.1 1 10 100
veriT w/o sym. (in s)

Fig. 2. Efficiency in solving individual instances: veriT vs. veriT without symmetries
on all formulas in the QF_UF category. Each point represents a benchmark, and its
horizontal and vertical coordinates represent the time necessary to solve it (in seconds).
Points on the rightmost and topmost edges represent a timeout.

=
o
=1

T

veriT (in's)

veriT w/o sym. (in s)

Fig. 3. Efficiency in solving individual instances: veriT vs. veriT without symmetries
on the unsatisfiable instances of the QF_UF category.

Nb. of instances|Instances within time range (in s) Total time

success timeout|0-20 20-40 40-60 60-80 80-100 100-120 T T
veriT 6633 14/6616 9 2 1 3 2| 3447 5127
veriT w/o sym.| 6570 7716493 33 14 9 12 9(10148 19388
CV(C3 6385 262(6337 20 12 7 5 4| 8118 29598
MathSAT 6547 100|6476 49 12 6 3 1| 5131 7531
openSMT 6624 236559 43 13 6 1 2| 5345 8105
Yices 6629 18|6565 32 23 5 1 3| 4059 6219
73 6621 2665642 33 23 15 4 4| 6847 9967

Table 1. Some SMT solvers on the QF_UF category

To compare with the state-of-the-art solvers, we selected all competing solvers
in SMT-COMP 2010, adding also Z3 (for which we took the most recent ver-
sion running on Linux we could find, namely version 2.8), and Yices (which was
competing as the 2009 winner). The results are presented in Table 1. Columns
T and T are the total time, in seconds, on the QF_UF library, excluding and in-
cluding timeouts, respectively. It is important to notice that these results include
the whole QF _UF library of benchmarks, that is, with the diamond benchmarks.
These benchmarks require some preprocessing heuristic [16] which does not seem
to be implemented in CVC3 and MathSAT. This accounts for 83 timeouts in
CVC3 and 80 in MathSAT. According to this table, with a 120 seconds timeout,
the best solvers on QF_UF without the diamond benchmarks are (in decreasing
order) veriT with symmetries, Yices, MathSAT, openSMT, CVC3. Exploiting
symmetries allowed veriT to jump from the second last to the first place of this
ranking. Within 20 seconds, it now solves over 50 benchmarks more than the
next-best solver.

Figure 4 presents another view of the same experiment; it clearly shows that
veriT is always better (in the number of solved instances within a given timeout)
than any other solver except Yices, but it even starts to be more successful that
Yices when the timeout is larger than 3 seconds. Scatter plots of veriT against
the solvers mentioned above give another comparative view; they are available in
Appendix A. Again the benefits on the zone with a time smaller that 3 seconds on
both axes is not always clear. Also, bear in mind that the satisfiable instances do
not benefit from the technique and still exhibit on the scatter plot the somewhat
poor efficiency of veriT without symmetries. But the zone between 3 and 120
seconds on the z axis is clearly more populated than the zone between 3 and
120 seconds on the y axis.

Table 2 presents a summary of the symmetries found in the QF_UF bench-
mark category. Among 6647 problems, 3310 contain symmetries tackled by our
method. For 2698 problems, the symmetry involves 5 constants; for most of
them, 3 symmetry breaking clauses were added.

The technique presented in this paper is a preprocessing technique, and, as
such, it is applicable to the other solvers mentioned here. We conducted an
experiment on the QF_UF benchmarks augmented with the symmetry breaking

100 - i i _
veriT —— i

veriT w/o sym. -
CvC3 -

MathSAT
OpenSMT —--—--- : 7/
Yices —— i N

Z3 ---- ; t ’

time (in seconds)

0.1 L
5000 5500 6000 6500 7000

solved instances

Fig. 4. Number of solved instances of QF _UF within a time limit, for some SMT solvers.

22 8 a4 s 6 78] 9 10| 11

12

2 12 8

3 24| 2668

4 221 92| 3

5 122| 166

6 156

7 17

8 11

9 5

10 2
Totall| 2] 12] 24] 2698] 214] 325] 17| 11] 5] 2

Table 2. Symmetries detected for the QF_UF category: nsym indicates the number of
constants involved in the symmetry, n. the number of symmetry breaking clauses.

clauses. We observed the same kind of impressive improvement for all solvers.
The most efficient solvers solve all but very few instances (diamond benchmarks
excluded): within a time limit of 120s and on the whole library, Yices only fails
for one formula, CVC for 36, and the others fails for 3 or 4 formulas. We also
observe a significant decrease in cumulative times, the most impressive being
Yices solving the full QF_UF library but one formula in around 10 minutes.
Scatter plots exhibiting the improvements are available in Appendix B.

7 Conclusion

Symmetry breaking techniques have been used very successfully in the areas of
constraint programming and SAT solving. We here present a study of symmetry
breaking in SMT. It has been shown that the technique can account for an
exponential decrease of running times on some series of crafted benchmarks, and
that it significantly improves performances in practice, on the QF_UF category
of the SMT library, a category for which the same solver performed fastest in
2009 and 2010. It may be argued that the heuristic has only be shown to be
effective on the pigeonhole problem and competition benchmarks in the QF_UF
category. However, we believe that in their most natural encoding many concrete
problems contain symmetries; provers in general and SMT solvers in particular
should be aware of those symmetries to avoid unnecessary exponential blowup.
We are particularly interested in proof obligations stemming from verification of
distributed systems; in this context many processes may be symmetric, and this
should translate to symmetries in the corresponding proof obligations.

Although the technique is applicable in the presence of quantifiers and in-
terpreted symbols, it appears that symmetries in the other SMT categories are
somewhat less trivial, and so, require more clever heuristics for guessing invari-
ance, as well as more sophisticated symmetry breaking tools. This is left for fu-
ture work. Also, our technique is inherently non-incremental, that is, symmetry
breaking assumptions should be retrieved, and checked against new assertions
when the SMT solver interacts in an incremental manner with the user. This is
not a major issue, but it certainly requires a finer treatment within the SMT
solver than simple preprocessing.

The veriT solver is open sourced under the BSD license and is available on
http://www.veriT-solver.org.

Acknowledgements. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed under the INRTA AL-
ADDIN development action with support from CNRS, RENATER and several
universities as well as other funding bodies (see https://www.grid5000.fr).
We would like to thank the anonymous reviewers for their helpful comments
and suggestions.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model
checking for timed systems. In D. Peled and M. Y. Vardi, editors, In IFIP WG
6.1 International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE), volume 2529 of LNCS, pages 243-259. Springer, 2002.

. C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo The-

ories Competition. In K. Etessami and S. K. Rajamani, editors, Computer Aided
Verification (CAV), volume 3576 of LNCS, pages 20-23. Springer, 2005.

C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825-885. IOS Press, Feb. 2009.

P. Baumgartner, A. Fuchs, H. de Nivelle, and C. Tinelli. Computing finite models
by reduction to function-free clause logic. J. Applied Logic, 7(1):58-74, 20009.

T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: an open,
trustable and efficient SMT-solver. In R. A. Schmidt, editor, Proc. Conference on
Automated Deduction (CADE), volume 5663 of Lecture Notes in Computer Science,
pages 151-156. Springer, 2009.

S. R. Buss. Polynomial size proofs of the propositional pigeonhole principle. Jour-
nal of Symbolic Logic, 52:916-927, 1987.

K. Claessen and N. Sorensson. New techniques that improve MACE-style finite
model finding. In Proceedings of the CADE-19 Workshop: Model Computation -
Principles, Algorithms, Applications, 2003.

D. Déharbe, P. Fontaine, S. Merz, and B. W. Paleo. Exploiting symmetry in SMT
problems, 2011. Available at http://www.loria.fr/~fontaine/Deharbe6b.pdf.
I. P. Gent, K. E. Petrie, and J.-F. Puget. The Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence, chapter Symmetry in Con-
straint Programming, pages 329-376. Elsevier, 2006. Edited by Francesca Rossi,
Peter van Beek and Toby Walsh.

A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297
— 308, 1985.

X. Jia and J. Zhang. A powerful technique to eliminate isomorphism in finite model
search. In U. Furbach and N. Shankar, editors, International Joint Conference on
Automated Reasoning (IJCAR), volume 4130 of LNCS, pages 318-331. Springer
Berlin / Heidelberg, 2006.

B. Krishnamurthy. Short proofs for tricky formulas. Acta Inf., 22:253-275, August
1985.

A. A. Razborov. Proof complexity of pigeonhole principles. In Conference on
Developments in Language Theory (DLT), pages 100-116. Springer-Verlag, 2002.
K. Roe. The heuristic theorem prover: Yet another smt-modulo theorem prover.
In T. Ball and R. B. Jones, editors, Computer Aided Verification (CAV), volume
4144 of LNCS, pages 467-470. Springer, 2006.

K. A. Sakallah. Symmetry and satisfiability. In A. Biere, M. Heule, H. van Maaren,
and T. Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Arti-
ficial Intelligence and Applications, pages 289-338. IOS Press, Feb. 2009.

O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding separation formulas with
SAT. In E. Brinksma and K. G. Larsen, editors, Computer Aided Verification
(CAV), volume 2404 of LNCS, pages 265-279. Springer, July 2002.

S. Szeider. The complexity of resolution with generalized symmetry rules. Theory
Comput. Syst., 38(2):171-188, 2005.

A veriT and other solvers

Here are scatter plots exhibiting the performances of veriT in solving individual
instances of QF_UF veriT against some other SMT solvers.

veriT (in s)
veriT (in s)

0.1 1 10 100 .
CVC3 (in's) MathSAT (in s)

100

veriT (in s)
veriT (in's)

0.1 1 10 100 Toa 1 10 100
OpenSMT (in s) Yices (in s)

veriT (in s)

0.1 1 10 100
Z3(ins)

B Other solvers on formulas with symmetry breaking
clauses
These scatter plots exhibit the gain of efficiency from symmetries for some state-

of-the-art solvers. They compare running times on QF _UF formulas with sym-
metry breaking clauses and on original formulas.

CVC3 with symmetries (in s)
MathSAT with symmetries (in s)

100 Toa 1 10 100
cves (ins) MathSAT (in s)

100 100

2 .
e £
g £ w0
: g
£ g
& £
s @
H £
£ H
< g
g 1 = 1
o

01 0.1

0.1 1 10 100
OpenSMT (in s) Yices (in's)

Z3 with symmetries (in s)

Toa 1 10 100
Z3(ins)

The following table presents the results of some SMT solvers on QF_UF
formulas without and with symmetry breaking clauses. 83 timeouts for CVC
and 80 for MathSAT are due to the diamond benchmarks.

Nb. of instances|Instances within time range (in s) Total time

success timeout|0-20 20-40 40-60 60-80 80-100 100-120 T T
veriT 6633 14/6616 9 2 1 3 2| 3447 5127
veriT w/o sym.| 6570 77|6493 33 14 9 12 910148 19388
CVC 6385 2626337 20 12 7 5 4| 8118 29598
MathSAT 6547 100{6476 49 12 6 3 1] 5131 7531
openSMT 6624 23|6559 43 13 6 1 2| 5345 8105
Yices 6629 18/6565 32 23 5 1 3| 4059 6219
73 6621 26|6542 33 23 15 4 4| 6847 9967
Hereunder are results on formulas with symmetry breaking clauses
CVC 6528 119(6463 42 9 7 2 5| 6495 10815
MathSAT 6563 84(6556 4 1 2 0 0| 1665 2145
openSMT 6644 36634 6 2 1 1 0| 1982 2342
Yices 6646 116642 3 0 1 0 0] 710 830
73 6644 316640 3 1 0 0 0] 1612 1972

