
Computing prime implicants

David Déharbe∗, Pascal Fontaine†, Daniel Le Berre‡, Bertrand Mazure‡

∗ UFRN, Brazil
† Inria, U. of Lorraine, France
‡ CRIL, U. of Artois, France

Abstract

Model checking and counter-example guided ab-
straction refinement are examples of applications of
SAT solving requiring the production of models for
satisfiable formulas. Better than giving a truth value
to every variable, one can provide an implicant, i.e.
a partial assignment of the variables such that every
full extension is a model for the formula. An implicant
is prime if every assignment is necessary. Since prime
implicants contain no literal irrelevant for the satisfi-
ability of the formula, they are considered as highly
refined information.

We here propose a novel algorithm that uses data
structures found in modern CDCL SAT solvers to
efficiently compute prime implicants starting from an
existing model. The original aspects are (1) the al-
gorithm is based on watched literals and a form of
propagation of required literals, adapted to CDCL
solvers (2) the algorithm works not only on clauses,
but also on generalized constraints (3) for clauses and,
more generally for cardinality constraints, the algo-
rithm complexity is linear in the size of the constraints
found. We implemented and evaluated the algorithm
with the Sat4j library.

1. Introduction

A LTHOUGH SAT is a decision problem whose
answer on an input formula is “satisfiable” or

“unsatisfiable”, it is often necessary or useful to
obtain an explanation of this output, i.e. proofs of
unsatisfiability for unsatisfiable formulas and models
for satisfiable formulas. As a side effect of the data

This work has been partially supported by CAPES grant 2347-13-
0, CNPq grants 308008/2012-0, 573964/2008-4 (National Institute
of Science and Technology for Software Engineering—INES), Nord-
Pas de Calais Regional Council and FEDER through the ’Contrat
de Projets Etat Region (CPER) 2007-2013’, and ANR TUPLES.

structures they use, modern SAT solvers output full
models for satisfiable formulas, i.e. they assign a value
to every variable in the input (even if the value of some
variables is irrelevant). For some applications, a partial
model or implicant (i.e. a partial assignment that is
sufficient to satisfy all clauses) is preferred to a full
assignment. Bounded model checking is one such ap-
plication: an assignment corresponds to an error trace,
and the smaller the assignment, the simpler it usually
is to understand the flaw [2]. Using implicants instead
of models is also useful when performing Boolean
optimization (e.g. Pseudo Boolean Optimization or
MaxSAT). Evaluating an objective function over an
implicant provides a range of values (which may
contain a single element) instead of a single value with
a model. As such, optimization approaches based on
strengthening may compute better upper bounds from
implicants rather than from models. Generating partial
assignments is also useful in Satisfiability Modulo
Theories (see [3] for a thorough introduction) when the
theory reasoner has a high complexity. Implicants are
also used in the context of compilation of knowledge
base, the cover of implicants being a classical way to
compile a knowledge base [4]–[6].

An implicant is prime if none of its proper subsets
is an implicant. The paper addresses the problem of
efficiently deriving a prime implicant from an existing
model of a satisfiable formula. A prime implicant
can be derived from a model by iteratively removing
the assignments that are not necessary. In this paper,
we present two instances of this greedy approach.
The first associates counters to constraints, yielding
the algorithm sketched in [7]. This algorithm has
complexity linear in the size of the constraints, but
requires specialized indexing and dedicated counters
as found in DPLL-based solvers. We propose a new
algorithm benefiting from the lazy data structures (i.e.
watched literals [8]) available in modern SAT solvers.
Our approach is not only suitable for clauses but

generalizes to e.g. cardinality constraints. For sets of
clauses and cardinality constraints, the complexity of
this algorithm is also linear, thanks to a dedicated
propagation procedure on the constraints.
Related work. We focus on computing one prime
implicant (not necessarily of minimum size) out of a
given model, using the data structures used in modern
SAT solvers. Algorithm 1 (Section 2.3) is quickly
discussed in [7] and [9], without concrete implementa-
tion or complexity study; in Section 2.3 we provide a
concrete instantiation of it, and discuss its complexity.
An algorithm embedding SAT solving techniques is
proposed in [10] and motivated by experimental re-
sults. Some other techniques, e.g. [11], involve encod-
ing the problem of finding prime implicants to linear
programming. Getting minimal assignments (i.e. prime
implicants) for a CNF (Conjunctive Normal Form)
from a model provided by a SAT solver is discussed
in [2], and several techniques are sketched. The authors
of this work notably notice that literals assigned by
propagation are mandatory in any prime implicant
included in the model; for completeness, we restate
formally this result in Section 2.3. They also mention
brute-force lifting, noticing it can be implemented in
time quadratic in the size of the CNF formula. In the
same context, the time complexity of our algorithms
is linear.

A lot of research concentrates on the problem of
generating one prime implicant or the set of all prime
implicants for a formula, without previous knowledge
of models, e.g. [4], [9], [12]–[14]. Also, many works
focus on the more complex problem of finding prime
implicants of minimum size (e.g. [15] in propositional
logic, and [16] in the context of SMT); the techniques
presented here could be used repeatedly to find prime
implicants of minimum size, but this goes beyond the
scope of this paper.
Overview. Section 2 introduces definitions and nota-
tions. In Section 2.3, we give an original formal pre-
sentation of some of the results mentioned above. Sec-
tion 3 then presents our algorithm based on watched
literals and propagation. This algorithm has been im-
plemented in the Sat4j library [1]; experimental results
are given in Section 4.

2. Basic principles

2.1. Definitions and notations

We assume the standard notions of propositional
logic, model, propositional variable, literal and clause.
A (set of) formula(s) B is a logical consequence of a
(set of) formula(s) A (A |= B) if every model of (all

elements in) A is also a model of (all elements in) B.
In this paper, we use the term constraint for formula,
implicitly understanding that a constraint c most often
denotes:
• a clause, a disjunctive set of literals;
• a cardinality constraint

∑
`i∈c `i ≥ k where k

(the degree) is an integer and each literal `i is
either 0 (false) or 1 (true) — a clause can be seen
as a cardinality constraint of degree 1;

• a pseudo-Boolean constraint
∑

`i∈c wi`i ≥ k,
where k and each wi are positive integers.

A set of constraints is viewed as the conjunctive
combination of its elements and a literal as a Boolean
assignment of a propositional variable. Throughout this
paper, a set of literals cannot contain two opposite
literals, so that sets of literals essentially are partial
mappings from the lexicon of propositional variables
to the Boolean values. In the following we identify a
model for a (set of) formula(s) with the set of all the
literals it satisfies.

A set of literals M is an implicant for a set of
constraints C if, for every constraint c ∈ C, M |= c.
An implicant M of C is a prime implicant if, for every
proper subset M ′ of M , M ′ is not an implicant of C.
Assuming M |= c and ` ∈ M , we say ` is a required
literal in M for constraint c, and write Req(M, `, c),
when M \ {`} 6|= c. In particular, for a clause c such
that M |= c, we have Req(M, `, c) iff M ∩ c = {`}.
A required literal ` for M and a set of constraints
C, denoted Req(M, `, C), is such that there exists a
constraint c ∈ C with Req(M, `, c).

2.2. Elements of SAT solving

Modern CDCL-based SAT solvers assume their in-
put is given as a set of clauses, but the techniques
described here may be generalized to handle cardinal-
ity and pseudo-Boolean constraints. To decide if a set
of clauses is satisfiable, a solver must find a variable
assignment that satisfies all clauses. Three key aspects
of this search are decision, propagation and learning.
Decision consists in setting an unassigned variable to
a Boolean value. A variable assignment is propagated
if it is enforced by the previous assignments, i.e. this
happens when all but one literal in a clause have been
assigned to false. Then this last literal must be true
for the set of clauses to be satisfiable. It may happen
that propagation implies a conflicting assignment. In
that case, a new clause (the conflict) is learnt, being
recorded as a new constraint. Then backtracking and
further propagation occur. If propagation terminates
without conflict, either all variables are assigned and
the set is satisfiable, or a new decision occurs. On an

unsatisfiable set of constraints, the algorithm will even-
tually reach a conflicting assignment with no decided
variable.

In practice, the computation cost is dominated by
propagation. A naı̈ve algorithm could be: whenever
a variable is assigned a value, all clauses containing
the literal set to false are checked for unsatisfiability
or new propagations. The watched literals technique
is a heuristic that effectively reduces that cost in
practice. In the case of clauses, it is based on the
observation that a clause needs to be inspected only
when all but one literal are assigned to false. So, for
each clause, two of its literals are watched, and the
clause is inspected only when one of the two watched
literals is assigned to false. This technique generalizes
to cardinality constraints, by watching at most k + 1
literals, for a constraint of degree k.

2.3. Greedy computation of prime implicants
from models

Consider a model M for a set of constraints C.
Most often, the model M is computed with a solver
using propagation; knowing which literals in M are
propagated, and which are not, is highly valuable
information for computing prime implicants out of M .
Indeed, the following simple lemma allows to directly
identify elements in M that have to be in every prime
implicant included in M .

Lemma 1: Assume 1) M is an implicant for a set
of formulas C, 2) c is a logical consequence of C, 3)
and M \{`} 6|= c. Then M \{`} is not an implicant of
C. In other words, the literal ` belongs to every prime
implicant included in M .
Proof. If c is a logical consequence of C, then every
implicant of C is an implicant of c. As M \ {`} is not
an implicant of c, M \{`} is not an implicant of C. ut

In the context of CDCL solvers, the above trivial
lemma has an interesting corollary. Assume ` ∈M is
propagated, i.e. there exists a constraint c in C or learnt
from C — in both cases, c is a logical consequence of
C — and a subset M ′ ⊆M \{`} such that M ′, c |= `.
Then M , C, c and ` fulfill the requirements of the
lemma: ` is mandatory in every implicant included in
M . Only decision literals may possibly be removed
from M to obtain a stronger implicant.

The abstract Algorithm 1 computes a prime impli-
cant for a set of constraints C, starting from a model
M0 of C and a subset Π0 of the literals known to
be in a prime implicant (e.g., the empty set, or the
set of all propagated literals in the CDCL solver that
produced M0). Variable M is an implicant for C of
decreasing size, and Π is an increasing subset of a

prime implicant included in M . The algorithm checks
each literal ` in M \Π and greedily adds it to Π if it is
required or removes it from M otherwise. There may
be several different prime implicants included in M0;
the successive choices of ` in line 3 determine which
of those prime implicants is returned by the algorithm.

Algorithm 1 Abstract computation of prime implicants
1: procedure PRIME(C,M0,Π0)
2: M,Π←M0,Π0

3: while ` ∈M \Π do
4: if Req(M, `, C) then Π← Π ∪ {`}
5: else M ←M \ {`}
6: return Π

The algorithm can be refined in a practical
and efficient algorithm. Remember that checking if
Req(M, `, C) is true comes to check if Req(M, `, c)
is true for some constraint in c ∈ C. It is thus useful,
in order not to check every constraint in C, to have an
index W (`) that gives the set of constraints containing
`. This index can be built efficiently, though it requires
to read the entire set of constraints.

Algorithm 2 was sketched in [7] and is specialized
for sets of clauses; it can be extended easily (at the
expense of heavier notations) to cardinality constraints
while preserving the linear complexity. It can also be
extended to arbitrary constraints, but requires to define
the concrete code for Req(M, `, c) for an arbitrary
constraint c. If c is a clause, Req(M, `, c) is true if
and only if M ∩ c = {`}. Such a test can be done
efficiently using counters for the true literals in every
clause c; in Alg. 2, line 10, ∃c ∈ W (`) . N[c] = 1
stands for a loop on W (`) that stops returning true if
N[c] = 1 for some c, and returns false otherwise. For
every clause c, N[c] has to be initialized to |M0 ∩ c|.
The counters in N have to be updated each time a
literal is removed from M (line 13).

Theorem 1: Given a satisfiable set of clauses C, a
model M0, and a set Π0 of literals mandatory in all
prime implicants included in M0, Algorithm 2 returns
a prime implicant for C. It runs in time O(

∑
c∈C |c|).

Proof. If the set of literals given as argument of the
function is a model, then the returned set of literals
is also a (partial) model for C. Indeed, a literal ` is
removed from the model if and only if all clauses are
still satisfied when ` is removed.

Furthermore, the returned partial model M is min-
imal. Assume M \ {`} is also a partial model for C.
If ` has not been removed, either there exists a clause
c ∈ C such that ` is the sole true literal, or ` was
initially in Π0. In the first case, M \ {`} cannot be a

Algorithm 2 Prime implicants for CNFs.
1: procedure PRIME(C,M0,Π0)
2: M,Π←M0,Π0

3: for all ` ∈M do W (`)← ∅
4: for all c ∈ C do
5: N[c]← 0
6: for all ` ∈ c do W (`)←W (`) ∪ {c}
7: for all ` ∈M do
8: for all c ∈W (`) do N[c]← N[c] + 1

9: for all ` ∈M \Π do
10: if ∃c ∈W (`) . N[c] = 1 then
11: Π← Π ∪ {`}
12: else
13: for all c ∈W (`) do N[c]← N[c]− 1

14: M ←M \ {`}
15: return Π

partial model for c and hence for C. The second case
would contradict the theorem hypothesis on Π0.

Assume that, for each clause c, the counter N[c]
can be read and modified in constant time. Assume
also that, for each `, the indexing W (`) of clauses
containing literal ` is such that 1) it can be emptied in
constant time, 2) an element can be added in constant
time, 3) all its elements can be iteratively read in
cumulative linear time. We also suppose that iterating
on C, M and M \ Π has a cumulative cost which is
respectively O(|C|), O(|M |), and O(|M |).

Under the above assumptions, Algorithm 2 is linear
with respect to the size of the clause set

∑
c∈C |c|.

We consider that every literal is present in at least one
clause so thatO(

∑
c∈C |c|+|M |) = O(

∑
c∈C |c|). Line

3 is O(|M |). Lines 4–6 involve inspecting each clause
and each literal in the clause, and execute a constant
time operation (at line 6) for each of those literals.
This block is thus O(

∑
c∈C |c|). Lines 7–8 involve

inspecting each clause c at most |c| times, and is thus
also O(

∑
c∈C |c|). In the last loop at lines 9-14, each

clause c from C is again examined at most 2×|c| times.
Overall, all four loops are O(

∑
c∈C |c|). ut

Algorithm 2 has linear complexity, but requires to
build an index of constraints by literals and counters.
Also, a constraint is examined once for every of its
literals satisfied in the model (not unlike what happens
in SAT solving with counters instead of watched liter-
als). Rather than preventing a counter from decreasing
to 0 (which, for SAT solving, would correspond to a
conflict), it is more reasonable to directly put in Π the
last satisfied literal of a clause as soon as the counter
reaches one (i.e. using some kind of propagation). This

motivates the version presented in the next section,
using watched literals, instead of indexes and counters.

3. Computing prime implicants by propa-
gation

It can be argued that the above algorithm uses late
detection of literals to add in the prime implicant. In-
deed, a literal ` is iteratively selected, and Req(M, `, c)
is checked for every constraint c containing `. Another
possibility is to use early detection of literals for addi-
tion to Π, similarly to Boolean constraint propagation
in SAT solvers. This yields the algorithms described
in this section.

3.1. An abstract version

Algorithm 3 is the early detection equivalent of
abstract Algorithm 1: it computes a prime implicant
out of an implicant M0 for a set of constraints C, and
any subset Π0 of the required literals in M0. Variable
M , initialized to M0, is an implicant for C of strictly
decreasing size, and Π is an increasing subset of a
prime implicant included in M . The larger Π0 is,
the faster the convergence1; also it is optional as the
algorithm is sound if it is empty. We introduce it for
future specializations.

Algorithm 3 Abstract propagation-based algorithm
1: procedure PRIME(C,M0,Π0)
2: M,Π←M0,Π0

3: Π← Π ∪ IMPLIED(C,M)
4: while ` ∈M \Π do
5: M ←M \ {`}
6: Π← Π ∪ IMPLIED(C,M)

7: return Π

Algorithm 3 first identifies and adds to Π the re-
quired literals of M (l. 3). Repeatedly one of the
remaining literals in M\Π is removed (l. 4) until M\Π
is empty. This may trigger other remaining literals to
be added to Π (l. 6). The call IMPLIED(C,M) yields
a subset of M such that

IMPLIED(C,M) \Π =
{
` | Req(M, `, C)

}
\Π,

i.e. IMPLIED(C,M) returns the set of literals in M that
should be added to Π because, for each of these literals,
a constraint requires this literal to be true. Note that,
in contrast to Algorithm 1, the literal chosen in l. 4 is
removed from the prime implicant without further test.

1. Technically, a SAT solver should assign Π0 to the set of literals
assigned by unit propagation while establishing M0 |= C.

Lines 3 and 6 establish the property that no literal in
M \Π is required.

Proposition 1: Given a set of constraints C, an
implicant M0, and Π0, a subset of {` | Req(M0, `, C)},
Algorithm 3 terminates and returns a prime implicant
of C included in M0.
Proof. The loop in Algorithm 3 satisfies the following
invariants:
I1: Π = {` | Req(M, `, C)};
I2: Π ⊆M ⊆M0;
I3: M is an implicant.
Invariant I1 is verified at the start of the loop as
a consequence of line 3 (assuming the pre-condition
Π0 ⊆ {` | Req(M, `, C)} for the call to PRIME) and
is preserved thanks to line 6. I2 is trivial, and I3 is
verified at the start of the loop as a consequence of
line 2. It is preserved since ` at lines 4 and 5 is not
in Π, thus is not required: ∀c .M \ {`} |= c. The new
value of M is again an implicant for all c.

The loop variant |M \ Π| is a strictly decreasing
sequence of natural numbers; the loop terminates when
M ⊆ Π, i.e. when M = Π (thanks to invariant I2)
and Π ⊆ M0. From invariant I3, Π is an implicant
and from invariant I1, this implicant is prime. This
establishes the property.

The above proof is suitable for any type of Boolean
constraints. For the special case of a clause c ∈ C, no-
tice that, as a direct consequence of the loop invariant,
c ∩Π 6= ∅ ∨ |c ∩M | ≥ 2. ut

There may exist several prime implicants in M0.
The one produced by Algorithm 3 depends only on
the successive choices of ` in line 4. Any prime
implicant subset of M0 may be produced, given the
right sequence of chosen literals. A prime implicant
produced by Algorithm 1 or Algorithm 2 is obtained by
Algorithm 3 by picking literals in the same sequence
and dropping literals that are already in prime.

3.2. Implementation with watched literals

A concrete implementation of the above abstract
algorithm would best use the data structures imple-
mented in state-of-the-art SAT solvers. This is the
approach of Algorithm 4: in addition to the model
M0, it reuses the watched literals relation at the ending
state of the SAT solver. We consider a general notion
of watched literals as a relation W between literals
and constraints such that, for every literal `, W (`) is
a (sub)set of constraints containing `. We now require
Π0 to initially contain all the literals that are directly
entailed by one constraint in C.2 Since such literals

2. In particular, Π0 should contain all literals in unit clauses.

are included in {` | Req(M, `, C)} the precondition
for Algorithm 3 is verified.

Algorithm 4 Prime implicants using watched literals
1: procedure PRIME(C,M0,Π0,W)
2: M,Π←M0,Π0

3: IMPLIEDW,0(C,M,Π,W)
4: while ` ∈M \Π do
5: M ←M \ {`}
6: IMPLIEDW (C,M, `,Π,W)

7: return Π

8: procedure IMPLIEDW,0(C,M, ref Π, ref W)
9: for all ` ∈M \Π do

10: IMPLIEDW (C,M, ¯̀,Π,W)

11: procedure IMPLIEDW (C,M, `, ref Π, ref W)
12: W` ←W (`)
13: for all c ∈W` do
14: HDL CONSTR(c,M, `,Π,W)

The data in Algorithm 4 includes the variables of
Algorithm 3, namely M and Π, and the watched liter-
als relation W . The inherent property of the watched
literals for a constraint c, i.e. W−1(c), is that, as
long as all watched literals remain either undefined or
true, nothing can be deduced from c in the current
assignment. In our context Π plays a rôle similar
to the current partial assignment in the SAT solver.
Let us define, for a constraint c, the set of literals
S(c) = Π∪W−1(c). Formally, W is always such that:

W1(c): ∀` ∈W−1(c) \Π .¬Req(S(c), `, c)
W2(c): S(c) ∩M |= c

Both properties should be satisfied by the inputs given
to our algorithm. Observe that: 1) if Π |= c, then
W1(c) is true; 2) when a literal ` is removed from M ,
W1(c) is not affected; and 3) if ` furthermore satisfies
¬Req(M, `, c), then W2(c) is also preserved. The
algorithm first establishes an additional loop invariant
(line 3):

W3(c): S(c) ⊆M

As in Algorithm 3, the main loop repeatedly removes
one (unrequired) literal ` from M \ Π (line 5), pos-
sibly augmenting Π with new literals, and repairs the
invariant properties for the watched literals (line 6).
Function HDL CONSTR (Algorithm 5) reestablishes
these properties for each c affected by the removal of
` from M . Its definition is left general enough so that
it can be specialized for different classes of constraints
and watched literals strategies. This greedy approach
is similar to Boolean propagation in SAT solving,

Π emulating the assignment whereas M restricts the
choice for watched literals and possible propagations.

Algorithm 5 HDL CONSTR for arbitrary constraints
1: procedure HDL CONSTR(c,M, `, ref Π, ref W)
2: Π← Π ∪ {`′ ∈W−1(c) | Req(M, `′, c)}
3: if Π 6|= c then
4: Choose W ′ such that
5: W ′ ⊆ (W−1(c) ∪M) \ {`}
6: (Π ∪W ′) ∩M |= c
7: ∀`′ ∈W ′ \Π .¬Req(W ′ ∪Π, `′, c)
8: in W−1(c)←W ′

Proposition 2: Given a set of constraints C, an
implicant M0, a set of literals Π0, and a relation W
between literals and constraints in C such that:
• {` | ∃c ∈ C . c |= `} ⊆ Π0 ⊆ {` | Req(M0, `, C)},
• ∀c ∈ C .W1(c) ∧W2(c)

then Algorithm 4 terminates and returns a prime im-
plicant of C contained in M0.
Proof. The proof is similar to that of Algorithm 3, the
same invariants being satisfied: we prove that lines 3
and 6 establish these invariants through the successive
calls to function HDL CONSTR (Algorithm 5).

First, consider the call in line 3. Before the call,
invariants I2 and I3 are satisfied, as well as W1(c)
and W2(c) for each constraint c, and Π ⊆ {` |
Req(M0, `, C)}, thanks to the preconditions of PRIME.
The call establishes W3(c) for every constraint c, and
at the same time, introduces literals in Π so that
{` | Req(M0, `, C)} ⊆ Π. This is a direct consequence
of line 2 in Algorithm 5, the other lines ensuring
that W1(c), and W2(c) remain preserved even if ¯̀

is removed. When all the negations of literals in M
have been removed from the watched literals by the
successive calls, W3(c) is also satisfied for each c.
Every element ` added in Π can be related to a
constraint c such that Req(M, `, c).

Now consider the call in l. 6. The invariants are satis-
fied, if it were not for the absence of ` in M . Again, for
each constraint c, the successive calls to HDL CONSTR
repair the invariant W3(c) while preserving W1(c) and
W2(c). This may insert new literals in Π if they are
required by c. ut

Function HDL CONSTR in Algorithm 5 is generic
and may be refined to handle specific classes of con-
straints. One such concrete implementation is given for
clauses and, more generally, for cardinality constraints
in Algorithm 6. Assuming |W−1(c)| ≥ 2, c ∈ W (`)
and ` 6∈ M , either there exists another literal `′ that
may be watched by c, in which case W is updated with

Algorithm 6 HDL CONSTR for clause or cardinality
constraints

1: procedure HDL CONSTR(c,M, `, ref Π, ref W)
2: if ∃`′ ∈ c ∩M . `′ /∈W−1(c) then
3: W ← (W ∪ {`′ 7→ c}) \ {` 7→ c}
4: else Π← Π ∪ (W−1(c) \ {`})

the new association, or there is no such literal, and the
literals in W−1(c) must be in the prime implicant and
are inserted into Π. In the special case of clauses, then
there is only one such literal.

Proposition 3: When C is a set of clauses and
HDL CONSTR is specified as in Algorithm 6, Algo-
rithm 4 runs in time O(

∑
c∈C |c|).

Proof. IMPLIEDW (C,M, `,Π,W) has cumulated
complexity in O(

∑
c∈C |c|). To achieve this rate, one

has to ensure that, for every clause c, the cumulative
time for the calls to HDL CONSTR with c is O(|c|).
This can simply be done by storing clauses as arrays of
literals indexed from 1 to |c|, using a pointer initialized
to 1 in this array, and looking for the suitable literal
from this pointer on (and updating its value). The suc-
cessive calls to HDL CONSTR on clause c would then
resume their search from the previous position. Each
literal in each clause would therefore be processed at
most once.

For every literal ` in M , there is one call to
IMPLIEDW (C,M, ¯̀,Π,W) in function IMPLIEDW,0.
Every clause in C is satisfied by at least one of its
watched literals. If a clause appears in W (¯̀), its other
watched literal is thus in M , and the watched ¯̀ will be
replaced by another watched literal in M (or the clause
stays in W (¯̀) and its other watched literal is added to
Π). So every clause will be examined at most once for
the whole run of IMPLIEDW,0. Assuming the search
for another watched literal in line 2 of Algorithm 6
remains linear with respect to the size of the clause,
IMPLIEDW,0 runs in time O(

∑
c∈C |c|).

IMPLIEDW is called at most once for each literal `
in M0 on line 6 in Algorithm 4. If the watch relation
for clause c is modified (on line 3 in Algorithm 6),
c will never occur again in W (`), since ` is removed
forever from M . As a consequence, every clause c will
be considered at most |c| times by the successive calls
of Algorithm 6. In these calls, the cumulated searches
for a new watched literal (condition on line 2 in Alg. 6)
accounts for a factor linear in the size of c. ut

Prop. 3 may be generalized to any class of con-
straints and watched literals strategy where the cumu-
lated time of HDL CONSTR(c) has a complexity linear
in the size of c. This holds for cardinality constraints,
as the watched literals strategy may also be employed.

4. Experimental evaluation

We present here some experimental results of the
proposed algorithm on the full set of benchmarks
from the MaxSAT 2010 evaluation. These benchmarks
represent a wide variety of problems in terms of area
and size. Some of these benchmarks have millions of
variables and a generic approach such as Algorithm 1
would not scale.

Since we use prime implicants to improve the upper
bounds computed by our MaxSAT solver, prime impli-
cants have to be computed on a set of clauses plus one
cardinality or pseudo-boolean constraint representing
the bound of the objective function. On the following
examples, we present the time required to compute the
first prime implicant of each benchmark.

Algorithm 4 (for clauses) and Algorithm 6 (for
clauses, cardinality and pseudo-Boolean constraints)
have been implemented in the Sat4j library. As de-
scribed in the previous section, the implementation
includes a propagation procedure similar to the clas-
sical unit propagation scheme found in CDCL solvers
with two key differences: i) the propagation always
eventually finds a satisfied literal and ii) the number
of steps to update the watched literals is reduced by
storing the last position in the search between each
call to the propagation procedure. Note that for clauses,
where only two literals are watched, a constraint with n
literals is traversed at most n times if there is no book-
keeping, and it may be a good tradeoff to avoid storing
that information for short clauses to save memory. For
larger clauses, or cardinality constraints, bookkeeping
the state of the search as proposed for Algorithm 6 is
crucial: on some examples, the time spent to compute
a prime implicant was dramatically reduced (e.g. from
240 seconds to less than one second) by such a simple
implementation detail, that guarantees the linearity
of the algorithm. For pseudo-Boolean constraints, we
use a counter based implementation and extra care
is required to update the state during backtracking
and to handle the literals that do not belong to the
implicant. Finally, learned clauses are ignored for the
propagation.

A classical implementation of Algorithm 1 with
quadratic complexity in the size of M0\Π0 has already
been available in Sat4j for several years. In practice,
this implementation performed well on many SAT
benchmarks because a vast majority of the literals
of the model found by the SAT solver are implied
by unit propagation, so M0 \ Π0 was initially much
smaller than M0 (Π0 containing all propagated literals
initially). There are however classes of problems for
which this is not true. For instance, if a selector vari-

able has been added for each clause in the CNF, is only
appears once in the formula, and is only propagated
when the original clause is falsified. Sat4j MaxSAT
uses selector variables to translate MaxSAT problems
into Pseudo-Boolean Optimization problems [1]. In
that context, counting the number of satisfied selector
variables provides an upper bound on the minimum
number of constraints that must be falsified. However,
despite a strategy to always branch first on falsified
selector variables, some selector variables may be
satisfied even if the original constraint is satisfied.
To improve the bounds, two solutions exist: using an
encoding enforcing that the selector variable can only
be satisfied if the original constraint is falsified, or
counting the selector variables on a prime implicant.
The former solution adds many binary clauses to the
original CNF (as many binary clauses as literals in
the original formula) and is inefficient in practice. The
latter solution works fine on many problems.

The previous version of Sat4j could not compute
prime implicants for industrial MaxSAT benchmarks
from circuit debugging with millions of variables and
clauses [17]. We used those benchmarks to com-
pare the proposed algorithm based on watched lit-
erals against one based on counters, both of linear
complexity. The results are summarized in Table 1.
The Sean Safarpour benchmark set contains 52 bench-
marks. Sat4j is able to load 36, running out of memory
for the others (when given 2GB of memory). For
those 36 benchmarks, we give the number of variables
(including the selector variables, one per clause), the
number of clauses, the total number of literals in
the formula (the cumulated size of the clauses), the
number of literals implied by unit propagation in the
model (#implied), and the time taken respectively by
the counter vs. watched literals approaches to compute
a prime implicant from the first model found by the
MaxSAT solver. We also give the median values on
those 36 benchmarks. The proposed algorithm was able
to compute prime implicants for all benchmarks within
a second, while the counter based approach missed one
(due to memory out) and lead in some cases to much
greater runtimes (grayed in the table).

5. Conclusion

We propose and discuss an algorithm to compute
prime implicants in time linear in the size of the input
formula designed for easy integration in modern SAT
solvers. This algorithm is based on lazy data structures
such as watched literals [8]. The efficiency of the
algorithm is maintained for other kinds of constraints
as long as some data structure ensures the constraint

Table 1. Experimental comparison of the prime
implicant algorithms on selected Sean Safarpour

benchmarks (2GB memory).
#vars #cla #literals #implied Alg. 2 Alg. 4
(M) (M) (M) (M) (s) (s)
2.3 1.7 4.0 0.5 4.842 0.736
1.3 0.9 2.2 0.4 0.347 0.377
1.5 1.1 2.7 0.4 2.860 0.495
2.6 1.8 4.4 0.6 MO 3.463
1.5 1.0 2.5 0.3 0.541 0.380
0.7 0.5 1.3 0.2 0.210 0.230
0.7 0.5 1.3 0.2 0.212 0.237
1.0 0.7 1.8 0.3 0.729 0.364
0.9 0.7 1.8 0.2 0.225 0.252
1.0 0.7 1.9 0.2 0.559 0.283
1.0 0.7 1.9 0.2 0.552 0.283
1.0 0.8 2.1 0.2 0.578 0.301
0.2 0.16 0.4 0.04 0.154 0.120
0.5 0.4 1.1 0.1 0.552 0.221
0.2 0.9 2.4 0.25 0.280 0.353
2.0 1.5 3.9 0.5 4.191 0.486
1.6 1.2 2.9 0.4 3.956 0.377
1.0 0.8 2.1 0.2 0.638 0.284
1.8 1.0 2.8 0.3 4.008 0.354
2.0 1.6 4.5 0.4 2.567 0.486
1.1 0.9 2.6 0.2 0.326 0.304
1.1 0.9 2.6 0.2 0.333 0.289
1.1 0.9 2.6 0.2 0.319 0.330
1.1 0.9 2.6 0.2 0.343 0.684
2.0 1.6 4.6 0.4 2.493 0.493
0.8 0.7 1.9 0.1 0.232 0.269
1.2 0.9 2.5 0.2 0.621 0.348
0.2 0.1 0.3 0.04 0.152 0.102
0.2 0.1 0.3 0.04 0.154 0.077
2.2 1.7 4.8 0.4 9.225 0.510
2.2 1.7 4.8 0.4 8.946 0.490
2.2 1.7 4.8 0.4 6.086 0.556
1.5 1.2 3.4 0.3 4.250 0.366
1.5 1.2 3.4 0.3 4.172 0.370
1.0 0.8 1.9 0.3 0.643 0.285
1.0 0.8 1.9 0.3 0.645 0.273

Median
1.168 0.930 - 0.268 0.578 0.301

will be traversed at most once during the successive
calls to the propagation procedure. This applies to both
clauses and cardinality constraints. The same algorithm
can also be applied to other kind of constraints, but
linear complexity may be lost.

We implemented the algorithm for clauses, cardi-
nality and pseudo-Boolean constraints in the Sat4j
platform. On a class of problems with millions of vari-
ables, we compare a counter based algorithm against
our watched literal algorithm. While both algorithms
are linear, our algorithm computed all prime implicants
in less than a second, which was not the case for
the other algorithm. These results show that applying
the proposed algorithm to compute prime implicants
instead of models has a negligible overhead.

Good prime implicant computation procedures are
useful for many applications. In particular, we inves-
tigate prime implicants for Boolean optimization by
strengthening, as the value of the objective function
computed on a prime implicant yields a better upper
bound than the value obtained with a model.

References
[1] D. Le Berre and A. Parrain, “The Sat4j library, release

2.2,” JSAT, vol. 7, no. 2-3, 2010.
[2] K. Ravi and F. Somenzi, “Minimal assignments for

bounded model checking,” in TACAS, 2004, vol. 2988
of LNCS.

[3] C. Barrett, R. Sebastiani, S.A. Seshia, and C. Tinelli,
“Satisfiability Modulo Theories,” in Handbook of Sat-
isfiability, vol. 185 of Frontiers in Artificial Intelligence
and Applications. 2009.

[4] R. Schrag, “Compilation for critically constrained
knowledge bases,” in AAAI, 1996, pp. 510–515.

[5] Y. Boufkhad, É. Grégoire, P. Marquis, B. Mazure, and
L. Saı̈s, “Tractable cover compilations,” in IJCAI, 1997.

[6] A. Darwiche and P. Marquis, “A knowledge compila-
tion map,” J. Artificial Intelligence Research, vol. 17,
2002.

[7] T. Castell, “Computation of prime implicates and
prime implicants by a variant of the Davis and Putnam
procedure,” in ICTAI, 1996.

[8] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik, “Chaff: engineering an efficient sat solver,”
in DAC, 2001.

[9] L. Palopoli, F. Pirri, and C. Pizzuti, “Algorithms
for selective enumeration of prime implicants,” Artif.
Intell., vol. 111, no. 1-2, 1999.

[10] S. Shen, Y. Qin, and S. Li, “Minimizing counterexam-
ple with unit core extraction and incremental SAT,” in
VMCAI, R. Cousot, Ed., 2005, vol. 3385 of LNCS.

[11] C. Pizzuti, “Computing prime implicants by integer
programming,” in ICTAI, 1996.

[12] A. Kean and G. Tsiknis, “An incremental method for
generating prime implicants/implicates,” J. Symbolic
Computation, vol. 9, no. 2, 1990.

[13] N. V. Murray and E. Rosenthal, “Linear response time
for implicate and implicant queries,” Knowl. Inf. Syst.,
vol. 22, no. 3, 2010.

[14] A. Ramesh, G. Becker, and N. V. Murray, “CNF
and DNF considered harmful for computing prime
implicants/implicates,” J. Automated Reasoning, vol.
18, no. 3, 1997.

[15] V. Manquinho, P. Flores, J. P. Marques Silva, and
A. Oliveira, “Prime implicant computation using satis-
fiability algorithms,” in ICTAI, 1997.

[16] I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken,
“Minimum satisfying assignments for SMT,” in Com-
puter Aided Verification (CAV), 2012, vol. 7358 of
LNCS.

[17] S. Safarpour, H. Mangassarian, A. Veneris, M. Liffiton,
and K. Sakallah, “Improved design debugging using
maximum satisfiability,” in FMCAD, 2007.

	Introduction
	Basic principles
	Definitions and notations
	Elements of SAT solving
	Greedy computation of prime implicants from models

	Computing prime implicants by propagation
	An abstract version
	Implementation with watched literals

	Experimental evaluation
	Conclusion
	References*-0.2cm

