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Abstract We present a framework for processing formulas in automatic theorem provers,
with generation of detailed proofs. The main components are a generic contextual recursion
algorithm and an extensible set of inference rules. Clausification, skolemization, theory-
specific simplifications, and expansion of ‘let’ expressions are instances of this framework.
With suitable data structures, proof generation adds only a linear-time overhead, and proofs
can be checked in linear time. We implemented the approach in the SMT solver veriT. This
allowed us to dramatically simplify the code base while increasing the number of problems
for which detailed proofs can be produced, which is important for independent checking
and reconstruction in proof assistants. To validate the framework, we implemented proof
reconstruction in Isabelle/HOL.

1 Introduction

An increasing number of automatic theorem provers can generate certificates, or proofs, that
justify the formulas they derive. These proofs can be checked by other programs and shared
across reasoning systems. It might also happen that a human user would want to inspect
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this output to understand why a formula holds. Proof production is generally well under-
stood for the core proving methods and for many theories commonly used in satisfiability
modulo theories (SMT). But most automatic provers also perform some formula processing
or preprocessing—such as clausification and rewriting with theory-specific lemmas—and
proof production for this aspect is less mature.

For most provers, the code for processing formulas is lengthy and deals with a multitude
of cases, some of which are rarely executed. Although it is crucial for efficiency, this code
tends to be given less attention than other aspects of provers. Developers are reluctant to in-
vest effort in producing detailed proofs for such processing, since this requires adapting a lot
of code. As a result, the granularity of inferences for formula processing is often coarse. To
avoid gaps in the proofs, it might also sometimes be necessary to simply disable processing
features, at a high cost in proof search performance.

Fine-grained proofs are important for a variety of applications. We propose a framework
to generate such proofs without slowing down proof search. Proofs are expressed using an
extensible set of inference rules (Sect. 3). The succedent of a rule is an equality between
the original term and the processed term. (It is convenient to consider formulas a special
case of terms.) The rules have a fine granularity, making it possible to cleanly separate
theories. Clausification, theory-specific simplifications, and expansion of ‘let’ expressions
are instances of this framework. Skolemization may seem problematic, but with the help of
Hilbert’s choice operator, it can also be integrated into the framework. Some provers provide
very detailed proofs for parts of the solving, but we are not aware of any prior publications
about practical attempts to provide easily reconstructible proofs for processing formulas
containing quantifiers and ‘let’ expressions.

At the heart of the framework lies a generic contextual recursion algorithm that traverses
the terms to process (Sect. 4). The context fixes some variables, maintains a substitution,
and keeps track of polarities or other data. The transformation-specific work, including the
generation of proofs, is performed by plugin functions that are given as parameters to the
framework. The recursion algorithm, which is critical for the performance and correctness
of the generated proofs, needs to be implemented only once. Another benefit of this modular
architecture is that we can easily combine several transformations in a single pass, without
complicating the code unduly or compromising the level of detail of the proof output. For
very large inputs, this can improve performance.

The inference rules and the contextual recursion algorithm enjoy many desirable prop-
erties (Sect. 5). We show that the rules are sound and that the treatment of binders is correct
even in the presence of name clashes. Moreover, assuming suitable data structures, we show
that proof generation adds an overhead that is proportional to the time spent processing the
terms. Checking proofs represented as directed acyclic graphs (DAGs) can be performed
with a time complexity that is linear in their size.

We implemented the approach in veriT (Sect. 6), an SMT solver that is competitive on
problems combining equality, linear arithmetic, and quantifiers [4]. Compared with other
SMT solvers, veriT is known for its very detailed proofs [9], which are reconstructed in the
proof assistants Coq [1] and Isabelle/HOL [10] and in the GAPT system [18]. As a proof of
concept, we extended the smt proof method in Isabelle/HOL with proof reconstruction for
veriT, in addition to the existing support for Z3 [13].

By adopting the new framework, we were able to remove large amounts of complicated
code in the solver, while enabling detailed proofs for more transformations than before. The
contextual recursion algorithm had to be implemented only once and is more thoroughly
tested than any of the monolithic transformations it subsumes. Our empirical evaluation
reveals that veriT is as fast as before even though it now generates finer-grained proofs.
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A shorter version of this article was presented at the CADE-26 conference as a system
description [3]. The current article includes proof reconstruction in Isabelle’s smt method,
more explanations and examples, detailed justifications of the metatheoretical claims, and
extensive coverage of related work. The side condition of the BIND rule has also been re-
paired to avoid variable capture.

2 Conventions

Our setting is a many-sorted classical first-order logic as defined by the SMT-LIB stan-
dard [6] or TPTP TFF [45]. Our results are also applicable to richer formalisms such as
higher-order logic (simple type theory) with polymorphism [21]. A signature Σ = (S ,F )
consists of a set S of sorts and a set F of function symbols over these sorts. Nullary func-
tion symbols are called constants. We assume that the signature contains a Bool sort and
constants true, false : Bool, a family (' : σ×σ→ Bool)σ∈S of function symbols inter-
preted as equality, and the connectives ¬, ∧, ∨, and −�→. Formulas are terms of type Bool,
and equivalence is equality (') on Bool. Terms are built over function symbols from F and
variables from a fixed family of infinite sets (Vσ)σ∈S . In addition to ∀ and ∃, we rely on two
more binders: Hilbert’s choice operator εx. ϕ and a ‘let’ construct, let x̄n ' s̄n in t, which
simultaneously assigns n variables that can be used in the body t.

We use the symbol = for syntactic equality on terms and =α for syntactic equality up
to renaming of bound variables. We reserve the names a,c, f,g,p,q for function symbols;
x,y,z for variables; r, s, t,u for terms (which may be formulas); ϕ,ψ for formulas; and Q for
quantifiers (∀ and ∃). We use the notations ān and (ai)

n
i=1 to denote the tuple, or vector,

(a1, . . . ,an). We write [n] for {1, . . . ,n}.
Given a term t, the sets of its free and bound variables are written FV(t) and BV(t), re-

spectively. The notation t[x̄n] stands for a term that may depend on distinct variables x̄n; t[s̄n]
is the corresponding term where the terms s̄n are simultaneously substituted for x̄n. Bound
variables in t are renamed to avoid capture. Following these conventions, Hilbert choice and
‘let’ are characterized by requiring interpretations to satisfy the following properties:

|= (∃x. ϕ[x])−�→ ϕ[εx. ϕ] (ε1)

|= (∀x. ϕ' ψ)−�→ (εx. ϕ)' (εx. ψ) (ε2)

|= (let x̄n ' s̄n in t[x̄n])' t[s̄n] (let)

Substitutions ρ are functions from variables to terms such that ρ(xi) 6= xi for at most finitely
many variables xi. We write them as {x̄n 7→ s̄n}; the omitted variables are mapped to them-
selves. The substitution ρ[x̄n 7→ s̄n] or ρ[x1 7→ s1, . . . , xn 7→ sn] maps each variable xi to the
term si and otherwise coincides with ρ. The application of a substitution ρ to a term t is
denoted by ρ(t). It is capture-avoiding; bound variables in t are renamed as necessary. Com-
position ρ′ ◦ρ is defined as for functions (i.e., ρ is applied first).

3 Inference System

The inference rules used by our framework depend on a notion of context defined by the
grammar

Γ ::= ∅ | Γ, x | Γ, x̄n 7→ s̄n
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The empty context ∅ is also denoted by a blank. Each context entry either fixes a variable x
or defines a substitution {x̄n 7→ s̄n}. Any variables arising in the terms s̄n will typically have
been introduced in the context Γ on the left, but this is not required. If a context introduces
the same variable several times, the rightmost entry shadows the others.

Abstractly, a context Γ fixes a set of variables and specifies a substitution subst(Γ). The
substitution is the identity for ∅ and is defined as follows in the other cases:

subst(Γ, x) = subst(Γ)[x 7→ x] subst(Γ, x̄n 7→ t̄n) = subst(Γ) ◦ {x̄n 7→ t̄n}

In the first equation, the [x 7→ x] update shadows any replacement of x induced by Γ. The
examples below illustrate this subtlety:

subst(x 7→ 7, x 7→ g(x)) = {x 7→ g(7)}
subst(x 7→ 7, x, x 7→ g(x)) = {x 7→ g(x)}

We write Γ(t) to abbreviate the capture-avoiding substitution subst(Γ)(t).
Transformations of terms (and formulas) are justified by judgments of the form Γ B

t ' u, where Γ is a context, t is an unprocessed term, and u is the corresponding processed
term. The free variables in t and u must appear in the context Γ. Semantically, the judgment
expresses the equality of the terms Γ(t) and u, universally quantified on variables fixed by Γ.
Crucially, the substitution applies only on the left-hand side of the equality.

The inference rules for the transformations covered in this article are presented below,
followed by explanations.

TAUTT if |=T Γ(t)' u
Γ B t ' u

Γ B s' t Γ B t ' u
TRANS if Γ(t) = t

Γ B s' u(
Γ B ti ' ui

)
n
i=1

CONG
Γ B f(t̄n)' f(ūn)

Γ, y, x 7→ y B ϕ' ψ
BIND if y /∈ FV(Qx. ϕ) ∪ V(Γ)

Γ B (Qx. ϕ)' (Qy. ψ)

Γ, x 7→ (εx. ϕ) B ϕ' ψ
SKO∃

Γ B (∃x. ϕ)' ψ
Γ, x 7→ (εx.¬ϕ) B ϕ' ψ

SKO∀
Γ B (∀x. ϕ)' ψ(

Γ B ri ' si
)

n
i=1 Γ, x̄n 7→ s̄n B t ' u

LET if Γ(si) = si for all i ∈ [n]
Γ B (let x̄n ' r̄n in t)' u

– TAUTT relies on an oracle |=T to derive arbitrary lemmas in a theory T . In practice,
the oracle will produce some kind of certificate to justify the inference. An important
special case, for which we use the name REFL, is syntactic equality up to renaming of
bound variables; the side condition is then Γ(t) =α u. (We use =α instead of = because
applying a substitution can rename bound variables.)

– TRANS needs the side condition because the term t appears both on the left-hand side
of ' (where it is subject to Γ’s substitution) and on the right-hand side (where it is not).
Without it, the two occurrences of t in the antecedent could denote different terms.

– CONG can be used for any function symbol f, including the logical connectives.

– BIND is a congruence rule for quantifiers. The rule also justifies the renaming of the
bound variable (from x to y). In the antecedent, the renaming is expressed by a substi-
tution in the context. If x = y, the context is Γ, x, x 7→ x, which has the same meaning
as Γ, x. The side condition prevents an unwarranted variable capture: The new variable
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should not be a free variable in the formula where the renaming occurs (y /∈ FV(Qx.ϕ)),
and should be fresh in the context (y /∈ V(Γ), where V(Γ) denotes the set of all variables
occurring in Γ). In particular, y should not appear fixed or on either side of a substitution
in the context.

– SKO∃ and SKO∀ exploit (ε1) to replace a quantified variable with a suitable witness,
simulating skolemization. We can think of the ε expression in each rule abstractly as a
fresh function symbol that takes any fixed variables it depends on as arguments. In the
antecedents, the replacement is performed by the context.

– LET exploits (let) to expand a ‘let’ expression. Again, a substitution is used. The terms r̄n
assigned to the variables x̄n can be transformed into terms s̄n.

The antecedents of all the rules inspect subterms structurally, without modifying them.
Modifications to the term on the left-hand side are delayed; the substitution is applied only in
TAUT. This is crucial to obtain compact proofs that can be checked efficiently. Some of the
side conditions may look computationally expensive, but there are techniques to compute
them fairly efficiently. Furthermore, by systematically renaming variables in BIND, we can
satisfy most of the side conditions trivially, as we will prove in Sect. 5.

The set of rules can be extended to cater for arbitrary transformations that can be ex-
pressed as equalities, using Hilbert choice to represent fresh symbols if necessary. The use-
fulness of Hilbert choice for proof reconstruction is well known [13,38,41], but we push the
idea further and use it to simplify the inference system and make it more uniform.

Example 1 The following derivation tree justifies the expansion of a ‘let’ expression:

CONG
B a' a

REFL
x 7→ a B x' a

REFL
x 7→ a B x' a

CONG
x 7→ a B p(x, x)' p(a,a)

LET
B (let x' a in p(x, x))' p(a,a)

It is also possible to further process the substituted term, as in this derivation:

TAUT+
B a+0' a

...
CONG

x 7→ a B p(x, x)' p(a,a)
LET

B (let x' a+0 in p(x, x))' p(a,a)

Example 2 The following derivation tree, in which εx abbreviates εx.¬p(x), justifies the
skolemization of the quantifier in the formula ¬∀x.p(x):

REFL
x 7→ εx B x' εx

CONG
x 7→ εx B p(x)' p(εx)

SKO∀
B (∀x.p(x))' p(εx)

CONG
B (¬∀x.p(x))' ¬p(εx)

The CONG inference above SKO∀ is optional; we could also have closed the derivation di-
rectly with REFL. In a prover, the term εx would be represented by a fresh Skolem constant c,
and we would ignore c’s connection to εx during proof search.
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Skolemization can be applied regardless of polarity. Usually, we skolemize only positive
existential quantifiers and negative universal quantifiers. However, skolemizing other quan-
tifiers is sound in the context of proving and hence allowed by our inference system. The
trouble is that unrestricted skolemization is generally incomplete, unless the prover can rea-
son about Hilbert choice. To paraphrase Orwell, all quantifiers are skolemizable, but some
quantifiers are more skolemizable than others.

Example 3 The next derivation tree illustrates the interplay between the theory rule TAUTT

and the equality rules TRANS and CONG:

CONG
B k' k

TAUT×
B 1×0' 0

CONG
B k+1×0' k+0

TAUT+
B k+0' k

TRANS
B k+1×0' k

CONG
B k' k

CONG
B (k+1×0 < k)' (k < k)

We could extend the tree at the bottom with an extra application of TRANS and TAUT< to
simplify k < k further to false. The example demonstrates that theories can be arbitrarily
fine-grained, which usually simplifies proof checking. At the other extreme, we could have
derived B (k+1×0 < k)' false using a single TAUT+∪×∪< inference.

Example 4 The tree below illustrates what can go wrong if we ignore side conditions:

REFL
Γ1 B f(x)' f(x)

REFL
Γ2 B x' f(x)

REFL
Γ3 B p(y)' p(f(f(x)))

LET*
Γ2 B (let y' x in p(y))' p(f(f(x)))

LET
Γ1 B (let x' f(x) in let y' x in p(y))' p(f(f(x)))

BIND
B (∀x. let x' f(x) in let y' x in p(y))' (∀x. p(f(f(x))))

In the above, Γ1 = x, x 7→ x; Γ2 = Γ1, x 7→ f(x); and Γ3 = Γ2, y 7→ f(x). The inference
marked with an asterisk (*) is illegal, because Γ2(f(x)) = f(f(x)) 6= f(x). We exploit this to
derive an invalid judgment, with a spurious application of f on the right-hand side. To apply
LET legally, we must first rename the universally quantified variable x to a fresh variable z
using the BIND rule:

REFL
Γ1 B f(x)' f(z)

REFL
Γ2 B x' f(z)

REFL
Γ3 B p(y)' p(f(z))

LET
Γ2 B (let y' x in p(y))' p(f(z))

LET
Γ1 B (let x' f(x) in let y' x in p(y))' p(f(z))

BIND
B (∀x. let x' f(x) in let y' x in p(y))' (∀z. p(f(z)))

This time, we have Γ1 = z, x 7→ z; Γ2 = Γ1, x 7→ f(z); and Γ3 = Γ2, y 7→ f(z). LET’s side
condition is satisfied: Γ2(f(z)) = f(z).

Example 5 The dangers of capture are illustrated by the following tree, where εy stands for
εy.p(x) ∧ ∀x.q(x,y):

REFL*
x,y 7→ εy B (p(x)∧∀x.q(x,y))' (p(x)∧∀x.q(x, εy))

SKO∃
x B (∃y.p(x)∧∀x.q(x,y))' (p(x)∧∀x.q(x, εy))

BIND
B (∀x.∃y.p(x)∧∀x.q(x,y))' (∀x.p(x)∧∀x.q(x, εy))
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The inference marked with an asterisk would be legal if REFL’s side condition were stated
using capturing substitution. The final judgment is unwarranted, because the free variable x
in the first conjunct of εy is captured by the inner universal quantifier on the right-hand side.

To avoid the capture, we rename the inner bound variable x to z. Then it does not matter
whether substitution is capturing or capture-avoiding:

REFL
x,y 7→ εy B p(x)' p(x)

REFL
x,y 7→ εy, x 7→ z B q(x,y)' q(z, εy)

BIND
x,y 7→ εy B (∀x.q(x,y))' (∀z.q(z, εy))

CONG
x,y 7→ εy B (p(x)∧∀x.q(x,y))' (p(x)∧∀z.q(z, εy))

SKO∃
x B (∃y.p(x)∧∀x.q(x,y))' (p(x)∧∀z.q(z, εy))

BIND
B (∀x.∃y.p(x)∧∀x.q(x,y))' (∀x.p(x)∧∀z.q(z, εy))

4 Contextual Recursion

We propose a generic algorithm for term transformations, based on structural recursion.
The algorithm is parameterized by a few simple plugin functions embodying the essence
of the transformation. By combining compatible plugin functions, we can perform several
transformations in one traversal. Transformations can depend on some context that encapsu-
lates relevant information, such as bound variables, variable substitutions, and polarity. Each
transformation can define its own notion of context that is threaded through the recursion.

The output is generated by a proof module that maintains a stack of derivation trees. The
procedure apply(R, n, Γ, t, u) pops n derivation trees D̄n from the stack and pushes the tree

D1 · · · Dn
R

Γ B t ' u

onto the stack. The plugin functions are responsible for invoking apply as appropriate. We
will show in Section 5 that the side conditions of the inference system in the previous section
are all satisfied, by construction.

4.1 The Generic Algorithm

The algorithm takes as arguments a context and a term, initially respectively the empty
context and the term to process, and returns the processed term. It performs a depth-first
postorder contextual recursion on the term to process. Subterms are processed first; then the
term together with the rewritten subterms are processed in turn. The context ∆ is updated
in a transformation-specific way with each recursive call. This context is abstract from the
point of view of the algorithm. It is only used and updated in the plugin functions.

The plugin functions are divided into two groups: ctx_let, ctx_quant, and ctx_app update
the context when entering the body of a binder or when moving from a function symbol to
one of its arguments; build_let, build_quant, build_app, and build_var return the processed
term and produce the corresponding derivation as a side effect.

function process(∆, t)
match t

case x:
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return build_var(∆, x)
case f(t̄n):

∆̄′n← (ctx_app(∆, f, t̄n, i))n
i=1

return build_app
(
∆, ∆̄′n, f, t̄n, (process(∆′i, ti))n

i=1
)

case Qx. ϕ:
∆′← ctx_quant(∆, Q, x, ϕ)
return build_quant(∆, ∆′, Q, x, ϕ, process(∆′, ϕ))

case let x̄n ' r̄n in t′:
∆′← ctx_let(∆, x̄n, r̄n, t′)
return build_let(∆, ∆′, x̄n, r̄n, t′, process(∆′, t′))

4.2 ‘Let’ Expansion and α-Conversion

The first instance of the contextual recursion algorithm expands ‘let’ expressions and re-
names bound variables systematically to avoid capture. Skolemization and theory simplifi-
cation, presented below, assume that this transformation has been performed.

The context consists of a list of fixed variables and variable substitutions, as in Sect. 3.
The plugin functions are as follows:

function ctx_let(Γ, x̄n, r̄n, t)
return Γ, x̄n 7→ (process(Γ, ri))

n
i=1

function ctx_app(Γ, f, t̄n, i)
return Γ

function build_let(Γ, Γ′, x̄n, r̄n, t, u)
apply(LET, n+1, Γ, let x̄n ' r̄n in t, u)
return u

function build_app(Γ, Γ̄′n, f, t̄n, ūn)
apply(CONG, n, Γ, f(t̄n), f(ūn))
return f(ūn)

function ctx_quant(Γ, Q, x, ϕ)
y← fresh variable
return Γ, y, x 7→ y

function build_quant(Γ, Γ′, Q, x, ϕ, ψ)
y← Γ′(x)
apply(BIND, 1, Γ, Qx. ϕ, Qy. ψ)
return Qy. ψ

function build_var(Γ, x)
apply(REFL, 0, Γ, x, Γ(x))
return Γ(x)

The ctx_let and build_let functions process ‘let’ expressions. In ctx_let, the substituted terms
are processed further before they are added to a substitution entry in the context. In build_let,
the LET rule is applied and the transformed term is returned. Analogously, the ctx_quant
and build_quant functions rename quantified variables systematically. This ensures that
any variables that arise in the range of the substitution specified by ctx_let will resist cap-
ture when the substitution is applied (cf. Example 4). Finally, the ctx_app, build_app, and
build_var functions simply reproduce the term traversal in the generated proof; they perform
no transformation-specific work.

Example 6 Following up on Example 1, assume ϕ = let x ' a in p(x, x). Given the above
plugin functions, process(∅, ϕ) returns p(a,a). It is instructive to study the evolution of the
stack during the execution of process. First, in ctx_let, the term a is processed recursively;
the call to build_app pushes a nullary CONG step with succedent B a ' a onto the stack.
Then the term p(x, x) is processed. For each of the two occurrences of x, build_var pushes a
REFL step onto the stack. Next, build_app applies a CONG step to justify rewriting under p:
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The two REFL steps are popped, and a binary CONG is pushed. Finally, build_let performs a
LET inference with succedent B ϕ' p(a,a) to complete the proof: The two CONG steps on
the stack are replaced by the LET step. The stack now consists of a single item: the derivation
tree of Example 1.

4.3 Skolemization

Our second transformation, skolemization, assumes that ‘let’ expressions have been ex-
panded and bound variables have been renamed apart. The context is a pair ∆ = (Γ, p),
where Γ is a context as defined in Sect. 3 and p is the polarity (+, −, or ?) of the term being
processed. The main plugin functions are those that manipulate quantifiers:

function ctx_quant((Γ, p), Q, x, ϕ)
if (Q, p)∈{(∃,+), (∀,−)} then

Γ′← Γ, x 7→ sko_term(Γ, Q, x, ϕ)
else

Γ′← Γ, x
return (Γ′, p)

function build_quant((Γ, p),∆′,Q, x,ϕ,ψ)
if (Q, p)∈{(∃,+), (∀,−)} then

apply(SKOQ, 1, Γ, Qx. ϕ, ψ)
return ψ

else
apply(BIND, 1, Γ, Qx. ϕ, Qx. ψ)
return Qx. ψ

The polarity component of the context is updated by ctx_app, which is not shown. For ex-
ample, ctx_app((Γ,−), ¬, ϕ, 1) returns (Γ,+), because if ¬ϕ occurs negatively in a larger
formula, then ϕ occurs positively. The ? polarity emerges when ctx_app analyzes the argu-
ments of connectives such as equivalence (←→) and of uninterpreted predicates. The plugin
functions build_app and build_var are as for ‘let’ expansion.

Positive occurrences of ∃ and negative occurrences of ∀ are skolemized. All other quan-
tifiers are kept as they are. The sko_term function returns an applied Skolem function symbol
following some reasonable scheme; for example, outer skolemization [39] creates an appli-
cation of a fresh function symbol to all variables fixed in the context. To comply with the
inference system, the application of SKO∃ or SKO∀ in build_quant instructs the proof mod-
ule to systematically replace the Skolem term with the corresponding ε term in the derivation
tree. In this way, the Skolem symbol is used during proof search, whereas the ε term is used
to record the derivation.

Example 7 Let ϕ=¬∀x. p(x). The call process((∅,+), ϕ) skolemizes ϕ into ¬p(c), where
c is a fresh Skolem constant. The initial process call invokes ctx_app on ¬ as the second ar-
gument, making the context negative, thereby enabling skolemization of ∀. The substitution
x 7→ c is added to the context. Applying SKO∀ instructs the proof module to replace c with
εx.¬p(x). The resulting derivation tree is as in Example 2.

The difference between inner or outer skolemization [39] is essentially only in the vari-
ables introduced in the Skolem terms. The proof itself is not sensitive to the type of skolem-
ization used, since Skolem terms are replaced in the derivation by the corresponding ε terms.
Also, mini- or maxi-scoping does not require any special processing. It amounts to formula
rewriting, which can be understood as simplifications (as described in the next section) that
are performed before skolemization is applied.
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4.4 Theory Simplification

All kinds of theory simplification can be performed on formulas. We restrict our focus to a
simple yet quite characteristic instance: the simplification of u+0 and 0+u to u. We assume
that ‘let’ expressions have been expanded. The context is a list of fixed variables. The plugin
functions ctx_app and build_var are as for ‘let’ expansion (Sect. 4.2); the remaining ones
are presented below:

function ctx_quant(Γ, Q, x, ϕ)
return Γ, x

function build_quant(Γ, Γ′, Q, x, ϕ, ψ)
apply(BIND, 1, Γ, Qx. ϕ, Qx. ψ)
return Qx. ψ

function build_app(Γ, Γ̄′n, f, t̄n, ūn)
apply(CONG, n, Γ, f(t̄n), f(ūn))
if f(ūn) has form u+0 or 0+u then

apply(TAUT+, 0, Γ, f(ūn), u)
apply(TRANS, 2, Γ, f(t̄n), u)
return u

else
return f(ūn)

The quantifier manipulation code, in ctx_quant and build_quant, is straightforward. The
interesting function is build_app. It first applies the CONG rule to justify rewriting the argu-
ments. Then, if the resulting term f(ūn) can be simplified further into a term u, it performs a
transitive chain of reasoning: f(t̄n)' f(ūn)' u.

Example 8 Let ϕ= k+1×0 < k. Assuming that the framework has been instantiated with
theory simplification for additive and multiplicative identity, invoking process(∅, ϕ) returns
the formula k < k. The generated derivation tree is as in Example 3.

4.5 Combinations of Transformations

Theory simplification can be implemented as a family of transformations, each member of
which embodies its own set of theory-specific rewrite rules. If the union of the rewrite rule
sets is confluent and terminating, a unifying implementation of build_app can apply the rules
in any order until a fixpoint is reached. Moreover, since theory simplification modifies terms
independently of the context, it is compatible with ‘let’ expansion and skolemization. This
means that we can replace the build_app implementation from Sect. 4.2 or 4.3 with that of
Sect. 4.4. In particular, this allows us to perform arithmetic simplification in the substituted
terms of a ‘let’ expression in a single pass (cf. Example 1).

The combination of ‘let’ expansion and skolemization is less straightforward. Consider
the formula ϕ = let y ' ∃x. p(x) in y→ y. When processing the subformula ∃x. p(x), we
cannot (or at least should not) skolemize the quantifier, because it has no unambiguous po-
larity; indeed, the variable y occurs both positively and negatively in the ‘let’ expression’s
body. We can of course give up and perform two passes: The first pass expands ‘let’ expres-
sions, and the second pass skolemizes and simplifies terms. The first pass also provides an
opportunity to expand equivalences, which are problematic for skolemization.

There is also a way to perform all the transformations in a single instance of the frame-
work. The most interesting plugin functions are ctx_let and build_var:

function ctx_let((Γ, p), x̄n, r̄n, t)
for i = 1 to n do

apply(REFL, 0, Γ, xi, Γ(ri))

Γ′← Γ, x̄n 7→ (Γ(ri))
n
i=1

return
(
Γ′, p)

function build_var((Γ, p), x)
apply(REFL, 0, Γ, x, Γ(x))
u← process((Γ, p), Γ(x))
apply(TRANS, 2, Γ, Γ(x), u)
return u
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In contrast to the corresponding function for ‘let’ expansion (Sect. 4.2), ctx_let does not
process the terms r̄n, which is reflected by the n applications of REFL, and it must thread
through polarities. The call to process is in build_var instead, where it can exploit the more
precise polarity information to skolemize the formula.

The build_let function is essentially as before. The ctx_quant and build_quant functions
are as for skolemization (Sect. 4.3), except that the else cases rename bound variables apart
(Sect. 4.2). The ctx_app function is as for skolemization, whereas build_app is as for theory
simplification (Sect. 4.4).

For the formula ϕ given above, process((∅,+), ϕ) returns (∃x.p(x))→ p(c), where c is
a fresh Skolem constant. The substituted term ∃x.p(x) is put unchanged into the substitution
used to expand the ‘let’ expression. It is processed each time y arises in the body y−�→ y. The
positive occurrence is skolemized; the negative occurrence is left as is. Using caching and a
DAG representation of derivations, we can easily avoid the duplicated work that would arise
if y occurred several times with positive polarity.

4.6 Scope and Limitations

Other possible instances of contextual recursion are the clause normal form (CNF) transfor-
mation and the elimination of quantifiers using one-point rules. CNF transformation is an
instance of rewriting of Boolean formulas and can be justified by a TAUTBool rule. Just like
Skolem terms are placeholders for ε expressions, Tseytin variables can be seen as placehold-
ers for the formulas they represent, and all definitions of Tseytin variables simply become
tautologies. This technique to produce proofs for CNF transformation has been implemented
for long in veriT [7]. One-point rules—e.g., the transformation of ∀x. x ' a −�→ p(x) into
p(a)—are similar to ‘let’ expansion and can be represented in much the same way in our
framework. To eliminate one-point quantifiers, we would simply extend the the inference
system with the following rules:

Γ B s' t Γ, x 7→ t B ϕ' ψ
1PT∀ if x /∈ FV(s) and Γ(t) = t

Γ B (∀x. x' s−�→ ϕ)' ψ

Γ B s' t Γ, x 7→ t B ϕ' ψ
1PT∃ if x /∈ FV(s) and Γ(t) = t

Γ B (∃x. x' s∧ϕ)' ψ

The plugin functions used by process would also be similar to those for ‘let’ expansion,
except that ctx_quant would need to examine the quantified formula’s body to determine
whether a one-point rule is applicable.

Some transformations, such as symmetry breaking [17] and rewriting based on global
assumptions, require a global analysis of the problem that cannot be captured by local substi-
tution of equals for equals. They are beyond the scope of the framework. Other transforma-
tions, such as simplification based on associativity and commutativity of function symbols,
require traversing the terms to be simplified when applying the rewriting. Since process
visits terms in postorder, the complexity of the simplifications would be quadratic, while a
processing that applies depth-first preorder traversal can perform the simplifications with a
linear complexity. Consider the formula a1 ∧ (a2 ∧ (· · · ∧ an) · · ·). Flattening it to an n-ary
conjunction with a postorder algorithm would simplify each subterm to a sequence of flat
conjunctions ai ∧ ·· · ∧ an (for i = n− 2 to 1), while a preorder algorithm could generate
a1∧·· ·∧an in a single traversal. Therefore, applying such transformations optimally is also
beyond the scope of the framework.
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5 Theoretical Properties

Before proving any properties of contextual recursion or proof checking, we establish the
soundness of the inference rules they rely on. We start by encoding the judgments in a well-
understood theory of binders: the simply typed λ-calculus. This provides a convenient stan-
dard basis to reason about them. In particular, it adequately captures the subtle combination
of variable fixing, substitution, and shadowing that is embodied by a judgment.

A context and a term will be encoded together as a single λ-term. We call these some-
what nonstandard λ-terms metaterms. They are defined by the grammar

M ::= t | λx. M | (λx̄n. M) t̄n

where xi and ti are of the same sort for each i ∈ [n]. A metaterm is either a term t decorated
with a box , a λ-abstraction, or the application of an uncurried λ-abstraction that simulta-
neously binds n distinct variables to an n-tuple of terms. The box’s role is to clearly delimit
a term from its context.

We let =αβ denote syntactic equality modulo α- and β-equivalence (i.e., up to renaming
of bound variables and reduction of applied λ-abstractions). We use the letters M,N,P to
refer to metaterms. The notion of type is as expected for simply typed λ-terms: The type of
t is the sort of t; the type of λx. M is σ→ τ, where σ is the sort of x and τ the type of

M; and the type of (λx̄n. M) t̄n is the type of M. It is easy to see that all metaterms contain
exactly one boxed term. M t denotes a metaterm whose box contains t, and M[N] denotes
the same metaterm after its box has been replaced with the metaterm N. To lighten notation,
we abbreviate the replacement M

[
u
]

to M u . Finally, V(M) is defined as the set of all free
and bound variables occurring in M.

Encoded judgments will have the form M ' N, for some metaterms M,N. The λ-abs-
tractions and applications represent the context, whereas the box stores the term. To invoke
the theory oracle |=T , we will need to reify equalities on metaterms—i.e., map them to
equalities on terms. Let M, N be metaterms of type σ1 → ··· → σn → σ, where σ is a
(non-function) sort. We define reify(M ' N) as ∀x̄n. t ' u, where M =αβ λx1. . . .λxn. t and
N =αβ λx1. . . .λxn. u . Because the right-hand sides of the two equivalences are in β-normal
form, t and u are characterized uniquely up to the names of the bound variables. For example,
if M = λu.(λv. p(v) ) u and N = λw. q(w) , we have M =αβ λx. p(x) and N =αβ λx. q(x) ,
and the reification of M ' N is ∀x. p(x)' q(x).

The inference rules presented in Sect. 3 can now be encoded as follows. We refer to
these new rules collectively as the encoded inference system:

TAUTT if |=T reify(M ' N)
M ' N

M ' N N′ ' P
TRANS if N =αβ N′

M ' P

(
M ti ' N ui

)
n
i=1

CONG
M f(t̄n) ' N f(ūn)

M
[
λy. (λx. ϕ ) y

]
' N

[
λy. ψ

]
BIND if y /∈ FV(Qx. ϕ) ∪ V(M)

M Qx. ϕ ' N Qy. ψ

M
[
(λx. ϕ ) (εx. ϕ)

]
' N

SKO∃
M ∃x. ϕ ' N

M
[
(λx. ϕ ) (εx.¬ϕ)

]
' N

SKO∀
M ∀x. ϕ ' N(

M ri ' N si
)

n
i=1 M

[
(λx̄n. t ) s̄n

]
' N u

LET if M si =αβ N si for all i ∈ [n]
M let x̄n ' r̄n in t ' N u

12



Lemma 9 If the judgment M ' N is derivable using the encoded inference system with the
theories T1, . . . ,Tn, then |=T reify(M ' N) with T = T1 ∪ ·· · ∪Tn ∪ ' ∪ ε ∪ let.

Proof By structural induction on the derivation of M ' N. For each inference rule, we as-
sume |=T reify(Mi ' Ni) for each judgment Mi ' Ni in the antecedent and show that |=T

reify(M ' N). In most of the cases, we implicitly rely on basic properties of the λ-calculus
to reason about reify.
CASE TAUTT ′ : This is trivial because T ′ ⊆T by definition of T .
CASES TRANS, CONG, AND BIND: These follow from the theory of equality (').
CASES SKO∃, SKO∀, AND LET: These follow from (ε1) and (ε2) or (let) and from the
congruence of equality. ut

A judgment Γ B t ' u is encoded as L(Γ)[t]' R(Γ)[u], where

L(∅)[t] = t R(∅)[u] = u
L(x,Γ)[t] = λx.L(Γ)[t] R(x,Γ)[u] = λx.R(Γ)[u]

L(x̄n 7→ s̄n,Γ)[t] = (λx̄n. L(Γ)[t]) s̄n R(x̄n 7→ s̄n,Γ)[u] = R(Γ)[u]

The L function encodes the substitution entries of Γ as λ-abstractions applied to tuples.
Reducing the applied λ-abstractions effectively applies subst(Γ). For example:

L(x 7→ 7, x 7→ g(x))[x] = (λx. (λx. x ) (g(x))) 7 =αβ g(7)

L(x 7→ 7, x, x 7→ g(x))[x] = (λx. λx. (λx. x ) (g(x))) 7 =αβ λx. g(x)

For any derivable judgment Γ B t ' u, the terms t and u must have the same sort, and
the metaterms L(Γ)[t] and R(Γ)[u] must have the same type. Another property is that L(Γ)[t]
is of the form M t for some M that is independent of t and similarly for R(Γ)[u], motivating
the suggestive brackets around L’s and R’s term argument.

Lemma 10 Let x̄n be the variables fixed by Γ in order of occurrence. Then L(Γ)[t] =αβ

λx1. . . .λxn. Γ(t) .

Proof By induction on Γ.
CASE ∅: L(∅)[t] = t = ∅(t) .
CASE x, Γ: Let ȳn be the variables fixed by Γ.

L(x, Γ)[t] = λx. L(Γ)[t]

=αβ λx.λy1. . . .λyn. Γ(t) {by the induction hypothesis}
= λx.λy1. . . .λyn. (x, Γ)(t) {by (∗), below}

where (∗) is the property that subst(Γ) = subst(x,Γ) for all x and Γ, which is easy to prove
by structural induction on Γ.
CASE x̄n 7→ s̄n, Γ: Let ȳn be the variables fixed by Γ, and let ρ= {x̄n 7→ s̄n}.

L(x̄n 7→ s̄n, Γ)[t] = (λx̄n. L(Γ)[t]) s̄n

=αβ (λx̄n.λy1. . . .λyn. Γ(t) ) s̄n {by the induction hypothesis}
=αβ λy1. . . .λyn. ρ(Γ(t)) {by β-reduction}
= λy1. . . .λyn. (x̄n 7→ s̄n, Γ)(t) {by (∗∗), below}

where (∗∗) is the property that ρ ◦ subst(Γ) = subst(x̄n 7→ s̄n, Γ) for all x̄n, s̄n, and Γ, which
is easy to prove by structural induction on Γ. The β-reduction step above is possible since,
by construction, the variables ȳn do not occur in x̄n 7→ s̄n. ut
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Lemma 11 If the judgment Γ B t' u is derivable using the original inference system, then
L(Γ)[t]' R(Γ)[u] is derivable using the encoded inference system.

Proof By structural induction on the derivation of Γ B t ' u.

CASE TAUTT : We have |=T Γ(t)' u. Using Lemma 10, we can easily show that |=T

Γ(t)' u is equivalent to |=T reify(L(Γ)[t]' R(Γ)[u]), the side condition of the encoded
TAUTT rule.

CASE BIND: The encoded antecedent is M
[
λy.(λx. ϕ ) y

]
' N

[
λy. ψ

]
(i.e., L(Γ,y, x 7→ y)

[ϕ] ' R(Γ,y, x 7→ y)[ψ]), and the encoded succedent is M Qx. ϕ ' N Qy. ψ . By the induc-
tion hypothesis, the encoded antecedent is derivable. Thus, by the encoded BIND rule, the
encoded succedent is derivable.

CASES CONG, SKO∃, AND SKO∀: Similar to BIND.

CASE TRANS: If Γ(t) = t, the substitution entries of Γ affect only variables that do not
occur free in t. Hence, R(Γ)[t] =αβ L(Γ)[t], as required by the encoded TRANS rule.

CASE LET: Similar to TRANS. ut

Incidentally, the converse of Lemma 11 does not hold, since the encoded inference rules
allow metaterms that contain applied λ-abstractions on the right-hand side of ', which do
not correspond to any original inference.

Theorem 12 (Soundness of Inferences) If the judgment Γ B t ' u is derivable using the
original inference system with the theories T1, . . . ,Tn, then |=T Γ(t)' u with T = T1 ∪
·· · ∪Tn ∪ ' ∪ ε ∪ let.

Proof This follows from Lemmas 9 and 11. The equivalence of |=T Γ(t)' u and |=T

reify(L(Γ)[t]' R(Γ)[u]) can be shown along the lines of case TAUTT of Lemma 11. ut

We turn to the contextual recursion algorithm that generates derivations in that system.
The first question is, Are the derivation trees valid? In particular, it is not obvious from the
code that the side conditions of the inference rules are always satisfied.

First, we need to introduce some terminology. A term is shadowing-free if nested binders
always bind variables with different names, and if bound variables do not also occur free;
for example, ∀x. (∀y. p(x, y)) ∧ (∀y. q(y)) is shadowing-free, whereas ∀x. (∀x. p(x, y)) ∧
(∀y. q(y)) is not. The set of variables fixed by Γ is written fix(Γ), and the set of variables
replaced by Γ is written repl(Γ). They are defined as follows:

fix(∅) = {} repl(∅) = {}
fix(Γ, x) = {x} ∪ fix(Γ) repl(Γ, x) = repl(Γ)

fix(Γ, x̄n 7→ s̄n) = fix(Γ) repl(Γ, x̄n 7→ s̄n) = {xi | si 6= xi} ∪ repl(Γ)

Trivial substitutions x 7→ x are ignored by repl, since they have no effect. The set of variables
introduced by Γ is defined by intr(Γ) = fix(Γ) ∪ repl(Γ). A context Γ is consistent if all the
fixed variables are mutually distinct and the two sets of variables are disjoint—i.e., fix(Γ) ∩
repl(Γ) = {}.

A judgment Γ B t ' u is canonical if Γ is consistent, FV(t)⊆ intr(Γ), FV(u)⊆ fix(Γ),
and BV(u)∩ V(Γ) = {}. The canonical inference system is a variant of the system of Sect. 3
in which all judgments are canonical and the rules TRANS, BIND, and LET have no side
conditions.
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Lemma 13 Any inference in the canonical inference system is also an inference in the orig-
inal inference system.

Proof It suffices to show that the side conditions of the original rules are satisfied.

CASE TRANS: Since the first judgment in the antecedent is canonical, FV(t) ⊆ fix(Γ). By
consistency of Γ, we have fix(Γ)∩ repl(Γ) = {}. Hence, FV(t)∩ repl(Γ) = {} and therefore
Γ(t) = t.

CASE BIND: Since the succedent is canonical, we have (1) FV(Qx. ϕ) ⊆ intr(Γ) and (2)
BV(Qy. ψ) ∩ V(Γ) = {}. From (2), we deduce y /∈ intr(Γ). Hence, by (1), we get y /∈
FV(Qx. ϕ) and y /∈ V(Γ).

CASE LET: Similar to TRANS. ut

Theorem 14 (Total Correctness of Recursion) For the instances presented in Sects. 4.2
to 4.4, the contextual recursion algorithm always produces correct proofs.

Proof The algorithm terminates because process is called initially on a finite input and re-
cursive calls always have smaller inputs.

For the proof of partial correctness, only the Γ part of the context is relevant. We will
write process(Γ, t) even if the first argument actually has the form (Γ, p) for skolemization.
The pre- and postconditions of a process(Γ, t) call that returns the term u are

PRE1 Γ is consistent;
PRE2 FV(t)⊆ intr(Γ);
PRE3 BV(t) ∩ fix(Γ) = {};

POST1 u is shadowing-free;
POST2 FV(u)⊆ fix(Γ);
POST3 BV(u) ∩ V(Γ) = {}.

For skolemization and simplification, we may additionally assume that bound variables have
been renamed apart by ‘let’ expansion, and hence that the term t is shadowing-free.

The initial call process(∅, t) trivially satisfies the preconditions on an input term t
that contains no free variable. We must show that the preconditions for each recursive call
process(Γ′, t′) are satisfied and that the postconditions hold at the end of process(Γ, t).

PRE1 (Γ′ is consistent): First, we show that the fixed variables are mutually distinct. For
‘let’ expansion (Section 4.2), all fixed variables are fresh, since all bound variables are re-
placed by fresh ones (see ctx_quant). For skolemization (Section 4.3) and simplification
(Section 4.4), the input is assumed to be shadowing-free. Hence, for any two fixed variables
in Γ′, the input formula must contain two quantifiers, one in the scope of the other. Thus, the
variables must be distinct. Second, we show that fix(Γ′)∩ repl(Γ′) = {}. For ‘let’ expansion,
all fixed variables are fresh. For skolemization, the condition is a direct consequence of the
fact that the input is shadowing-free. For simplification, the context is never extended with
a substitution, thus repl(Γ′) = {} since the context is empty in the initial call.

PRE2 (FV(t′) ⊆ intr(Γ′)): We have FV(t) ⊆ intr(Γ). The desired property holds because
the ctx_let and ctx_quant functions add to the context any bound variables that become free
when entering the body t′ of a binder.

PRE3 (BV(t′) ∩ fix(Γ′) = {}): The only function that fixes variables is ctx_quant. For ‘let’
expansion, all fixed variables are fresh. For skolemization and simplification, the condition
is a consequence of the shadowing-freedom of the input.

POST1 (u is shadowing-free): The only function that builds quantifiers is build_quant. The
process(Γ′, ϕ) call that returns the processed body ψ of the quantifier is such that y∈ intr(Γ′)
in the ‘let’ expansion case and x ∈ intr(Γ′) in the other two cases. The induction hypothesis
ensures that ψ is shadowing-free and BV(ψ) ∩ V(Γ′) = {}; hence, the result of build_quant
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(i.e., Qy. ψ or Qx. ψ) is shadowing-free. Quantifiers can also emerge when applying a sub-
stitution in build_var. This can happen only if ctx_let has added a substitution entry to the
context, in which case the substituted term is the result of a call to process and is thus
shadowing-free.

POST2 (FV(u) ⊆ fix(Γ)): In most cases, this condition follows directly from the induction
hypothesis POST2. The only case where a variable appears fixed in the context Γ′ of a
recursive call to process and not in Γ is when processing a quantifier, and then that variable
is bound in the result. For variable substitution, it suffices to realize that the context in which
the substituted term is created (and which fixes all the free variables of the term) is a prefix
of the context when the substitution occurs.

POST3 (BV(u)∩ V(Γ) = {}): In most cases, this condition follows directly from the induc-
tion hypothesis POST3: For every recursive call, V(Γ)⊆ V(Γ′). Two cases require attention.
For ‘let’ expansion, a variable may be replaced by a term with bound variables. Then the
substituted term’s bound variables are all fresh. The variables introduced by Γ will be other
fresh variables or variables from the input. The second case is when a quantified formula
is built. For ‘let’ expansion, a fresh variable is used. For skolemization and simplification,
since the input is shadowing-free, x is unused in Γ.

It is easy to see that each apply call generates a rule with an antecedent and a succedent
of the right form, ignoring the rules’ side conditions. Moreover, all calls to apply generate
canonical judgments thanks to the pre- and postconditions proved above. Correctness fol-
lows from Lemma 13. ut

Observation 15 (Complexity of Recursion) For the instances presented in Sects. 4.2 to
4.4, the ‘process’ function is called at most once on every subterm of the input.

Justification It suffices to notice that a call to process(∆, t) induces at most one call for each
of the subterms in t. ut

As a corollary, if all the operations performed in process excluding the recursive calls
can be accomplished in constant time, the algorithm has linear-time complexity with respect
to the input. There exist data structures for which the following operations take constant
time: extending the context with a fixed variable or a substitution, accessing direct subterms
of a term, building a term from its direct subterms, choosing a fresh variable, applying a
context to a variable, checking if a term matches a simple template, and associating the
parameters of the template with the subterms. Thus, it is possible to have a linear-time
algorithm for ‘let’ expansion and simplification.

On the other hand, construction of Skolem terms is at best linear in the size of the context
and of the input formula in process. Hence, skolemization is at best quadratic in the worst
case. This is hardly surprising because in general, the formula ∀x1.∃y1. . . .∀xn.∃yn. ϕ[x̄n, ȳn],
whose size is proportional to n, is skolemized to ∀x1. . . .∀xn. ϕ[x̄n, f1(x̄1), f2(x̄2), . . . , fn(x̄n)],
whose size is quadratic in n.

Observation 16 (Overhead of Proof Generation) For the instances presented in Sects.
4.2 to 4.4, the number of calls to the ‘apply’ procedure is proportional to the number of
subterms in the input.

Justification This is a corollary of Observation 15, since the number of apply calls per
process call is bounded by a constant (3, in build_app for simplification). ut
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Notice that all arguments to apply must be computed regardless of the apply calls. If an
apply call takes constant time, the proof generation overhead is linear in the size of the input.
To achieve this performance, it is necessary to use sharing to represent contexts and terms
in the output; otherwise, each call to apply might itself be linear in the size of its arguments,
resulting in a nonlinear overhead on the generation of the entire proof.

Observation 17 (Cost of Proof Checking) Checking an inference step can be performed
in constant time if checking the side condition takes constant time.

Justification The inference rules involve only shallow conditions on contexts and terms, ex-
cept in the side conditions. Using suitable data structures with maximal sharing, the contexts
and terms can be checked in constant time. ut

The above statement may appear weak, since checking the side conditions might itself
be linear, leading to a cost of proof checking that can be at least quadratic in the size of the
proof (measured as the number of symbols that represent it). Fortunately, most of the side
conditions can be checked efficiently. For example, for simplification (Sect. 4.4), the BIND

rule is always applied with x = y, which implies the side condition y /∈ FV(Qx.ϕ); and since
no other rule contributes to the substitution, subst(Γ) is the identity. Thus, simplification
proofs can be checked in linear time. Moreover, certifying a proof by checking each step
locally is not the only possibility. An alternative is to use an algorithm similar to the process
function to check a proof in the same way as it has been produced. Such an algorithm can
exploit sophisticated invariants on the contexts and terms.

6 Implementation

We implemented the contextual recursion algorithm and the transformations described in
Sect. 4 in the SMT solver veriT [14], showing that replacing the previous ad hoc code
with the generic proof-producing framework had no significant detrimental impact on the
solving times. In addition, we developed two tools for Isabelle/HOL [36]. The first tool is a
prototypical proof checker for the inference system described in Sect. 3, which we used to
convince ourselves that the inference rules made sense. The second tool is an extension of
the smt proof method with reconstruction of veriT-generated proofs.

6.1 veriT

We implemented the contextual recursion framework in the SMT solver veriT,1 replacing
large parts of the previous non-proof-producing, hard-to-maintain code. Even though it of-
fers more functionality (proof generation), the preprocessing module is about 20% smaller
than before and consists of about 3000 lines of code. There are now only two traversal
functions instead of 10. This is, for us, a huge gain in maintainability.

Proofs. Previously, veriT provided detailed proofs for the resolution steps performed by
the SAT solver and the lemmas added by the theory solvers and instantiation module. All
transformations performed in preprocessing steps were represented in the proof in a very
coarse manner, amounting to gaps in the proof. For example, when ‘let’ expressions were

1 http://matryoshka.gforge.inria.fr/pubs/processing/veriT.tar.gz
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expanded in a formula, the only information present in the proof would be the formula before
and after ‘let’ expansion.

When extending veriT to generate more detailed proofs, we were able to reuse its exist-
ing proof module and proof format [9]. A proof is a list of inferences, each of which consists
of an identifier (e.g., .c0), the name of the rule, the identifiers of the dependencies, and the
derived clause. The use of identifiers makes it possible to represent proofs as DAGs. We
extended the format with the inference rules of Sect. 3. The rules that augment the context
take a sequence of inferences—a subproof —as a justification. The subproof occurs within
the scope of the extended context. Following this scheme, the skolemization proof for the
formula ¬∀x. p(x) from Example 2 is presented as

(.c0 (sko_forall :conclusion ((∀x. p(x))' p(εx.¬p(x)))
:args (x 7→ (εx.¬p(x)))
:subproof ((.c1 (refl :conclusion (x' (εx.¬p(x)))))

(.c2 (cong :clauses (.c1) :conclusion (p(x)' p(εx.¬p(x))))))))
(.c3 (cong :clauses (.c0) :conclusion ((¬∀x. p(x))' ¬p(εx.¬p(x)))))

Formerly, no details of these transformations would be recorded. The proof would have con-
tained only the original formula and the skolemized result, regardless of how many quanti-
fiers appeared in the formula.

In contrast to the abstract proof module described in Sect. 4, veriT leaves REFL steps
implicit for judgments of the form Γ B t ' t. The other inference rules are generalized to
cope with missing REFL judgments. In addition, when printing proofs, the proof module
can automatically replace terms in the inferences with some other terms. This is necessary
for transformations such as skolemization and ‘if–then–else’ elimination. We must apply a
substitution in the replaced term if the original term contains variables. In veriT, efficient
data structures are available to perform this.

Transformations. The implementation of contextual recursion uses a single global context,
augmented before processing a subterm and restored afterwards. The context consists of a
set of fixed variables, a substitution, and a polarity. In our setting, the substitution satisfies
the side conditions by construction. If the context is empty, the result of processing a sub-
term is cached. For skolemization, a separate cache is used for each polarity. No caching is
attempted under binders.

Invoking process on a term returns the identifier of the inference at the root of its trans-
formation proof in addition to the processed term. These identifiers are threaded through the
recursion to connect the proof. The proofs produced by instances of contextual recursion
are inserted into the larger resolution proof produced by veriT. Consider an input formula
ϕ, processed using the framework in this paper into ψ. The framework provides a derivation
D of B ϕ ' ψ. Insertion of this proof into the larger resolution proof is achieved, using
resolution, through an inference of the form

ϕ D
TAUT'¬(ϕ' ψ) ∨ ¬ϕ ∨ ψ
RESOLVE

ψ

Transformations performing theory simplification were straightforward to port to the
new framework: Their build_app functions simply apply rewrite rules until a fixpoint is
reached. Porting transformations that interact with binders required special attention in han-
dling the context and producing proofs. Fortunately, most of these aspects are captured by
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the inference system and the abstract contextual recursion framework, where they can be
studied independently of the implementation.

Some transformations are performed outside of the framework. Proofs of CNF transfor-
mation are expressed using the inference rules of veriT’s underlying SAT solver, so that any
tool that can reconstruct SAT proofs can also reconstruct these proofs. Simplification based
on associativity and commutativity of function symbols is implemented as a dedicated pro-
cedure, for efficiency reasons (Sect. 4.6). It currently produces coarse-grained proofs.

Evaluation. To evaluate the impact of the new contextual recursion algorithm and of pro-
ducing detailed proofs, we compare the performance of different configurations of veriT.
Our experimental data is available online.2 We distinguish three configurations. BASIC only
applies transformations for which the old code provided some (coarse-grained) proofs. EX-
TENDED also applies transformations for which the old code did not provide any proofs,
whereas the new code provides detailed proofs. COMPLETE applies all transformations
available, regardless of whether they produce proofs.

More specifically, BASIC applies the transformations for ‘let’ expansion, skolemization,
elimination of quantifiers based on one-point rules, elimination of ‘if–then–else’, theory
simplification for rewriting n-ary symbols as binary, and elimination of equivalences and ex-
clusive disjunctions with quantifiers in subterms. EXTENDED adds Boolean and arithmetic
simplifications to the transformations performed by BASIC. COMPLETE performs global
rewriting simplifications and symmetry breaking in addition to the transformations in EX-
TENDED.

The evaluation was carried out on two main sets of benchmarks from SMT-LIB [6]:
the 20916 benchmarks in the quantifier-free (QF) categories QF_ALIA, QF_AUFLIA, QF_
IDL, QF_LIA, QF_LRA, QF_RDL, QF_UF, QF_UFIDL, QF_UFLIA, and QF_UFLRA;
and the 30250 benchmarks labeled as unsatisfiable in the non-QF categories AUFLIA, AU-
FLIRA, UF, UFIDL, UFLIA, and UFLRA. The categories with bit vectors and nonlinear
arithmetic are not supported by veriT. Our experiments were conducted on servers equipped
with two Intel Xeon E5-2630 v3 processors, with eight cores per processor, and 126 GB of
memory. Each run of the solver uses a single core. The time limit was set to 30 s, a reason-
able value for interactive use within a proof assistant.

The tables below indicate the number of benchmark problems solved by each configu-
ration for the quantifier-free and non-quantifier-free benchmarks:

QF Old code New code

BASIC without proofs 13 489 13 496
with proofs 13 360 13 352

EXTENDED without proofs 13 539 13 537
with proofs N/A 13 414

COMPLETE without proofs 13 826 13 819
with proofs N/A N/A

2 http://matryoshka.gforge.inria.fr/pubs/processing/
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NON-QF Old code New code

BASIC without proofs 28 746 28 762
with proofs 28 744 28 766

EXTENDED without proofs 28 785 28 852
with proofs N/A 28 857

COMPLETE without proofs 28 759 28 794
with proofs N/A N/A

These results indicate that the new generic contextual recursion algorithm and the pro-
duction of detailed proofs do not impact performance negatively in any significant way com-
pared with the old code. In addition, fine-grained proofs are now provided, whereas before
only the original formula and the result were given after each set of transformations, without
any further details, which arguably did not even constitute a proof. The time difference is
less than 0.1%, and the small changes in the number of solved problems are within the range
one can observe with any irrelevant perturbations (e.g., when renaming symbols or reorder-
ing axioms). These perturbations arise because the old and new algorithms may produce
slightly different formulas. Due to its reliance on heuristics, SMT solving, like first-order
proving and SAT solving, is well known for its somewhat chaotic behavior with respect to
perturbations. The slight increase in the number of solved problems on non-QF benchmarks
can be explained by such effects.

Allowing Boolean and arithmetic simplifications leads to some improvements, espe-
cially for the quantifier-free benchmarks. Currently, when outputting proofs, global trans-
formations are just turned off. Producing proofs on these transformations would allow fur-
ther simplifications of the input formulas, and we would expect many more benchmarks,
especially quantifier-free ones, to be within reach of the SMT solver with detailed proof
production.

6.2 Isabelle

Prototypical Encoding of Derivation Trees. Isabelle/HOL is a proof assistant based on clas-
sical higher-order logic (HOL) [21], a variant of the simply typed λ-calculus. Its primary
implementation language is Standard ML.

Thanks to the availability of λ-terms, we could follow the lines of the encoded inference
system of Sect. 5 to represent judgments in HOL. The resulting prototypical proof checker
is included in the official version of Isabelle.3 In this simple prototype, derivations are rep-
resented by a recursive ML datatype. A derivation is a tree whose nodes are labeled by rule
names. Rule TAUTT also carries a theorem that represents the oracle |=T , and rules TRANS

and LET are labeled with the terms that occur only in the antecedent (t and s̄n).
Terms and metaterms are translated to HOL terms, and judgments M ' N are trans-

lated to HOL equalities t ' u, where t and u are HOL terms. For example, the judgment
x, y 7→ g(x) B f(y) ' f(g(x)) is represented by the HOL equality (λx. (λy. f y) (g x)) '
(λx. f (g x)). Uncurried λ-applications are encoded by means of a polymorphic “uncurry”
combinator case× : (α→ β→ γ)→ α×β→ γ; in Isabelle/HOL, λ(x,y). t is syntactic sugar
for case× (λx.λy. t). This scheme is iterated to support n-tuples, represented by nested pairs

3 http://isabelle.in.tum.de/repos/isabelle/file/Isabelle2018/src/HOL/ex/veriT_
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(t1,(· · ·(tn−1, tn) · · ·)). To implement the inference rules, it is necessary to be able to lo-
cate any metaterm’s box. There is an easy criterion: Translated metaterms are of the form
(λ. . . .) . . . or case× . . . , which is impossible for a translated term.

Because reconstruction is not verified, it is not guaranteed to always succeed, but when
it does, the result is certified by Isabelle’s LCF-style inference kernel [22]. We hand-coded
a few dozen examples to test various cases. For example, given the HOL terms t =¬∀x. p ∧
∃x. ∀x. q x x and u = ¬∀x. p ∧ ∃x. q (εx.¬q x x) (εx.¬q x x) and the ML tree

N (Cong, [N (Bind, [N (Cong, [N (Refl, []),N (Bind, [N (Sko_All, [N (Refl, [])])])])])]))

the reconstruction function returns the HOL theorem t ' u.

A Proof Reconstruction Method. Following the publication of our CADE-26 paper [3], we
developed a usable integration of veriT proofs, including a parser and efficient reconstruc-
tion. It is part of the development version of Isabelle4 and is expected to be included in the
next official release (Isabelle2019).

Isabelle’s smt proof method, implemented by Böhme [13], translates a proof goal to
SMT-LIB and invokes an SMT solver. If the solver reports “unsatisfiable,” the user can either
trust the result (in which case the solver is called an oracle) or, for Z3, let smt replay the
proof in Isabelle. Weaknesses in the reconstruction code may lead to timeouts, but unless
there is a bug in Isabelle’s kernel, invalid proofs will be rejected. Reconstruction is not a
perfect art, but for Z3, success rates above 99% were observed in practice [11, Sect. 3.4.1].

We have now extended smt to reconstruct proofs generated by veriT in addition to Z3.
The veriT proof language currently includes 71 inference rules. We distinguish four cate-
gories of rules:

1. Some rules correspond to a single Isabelle inference or to the instantiation of an Isabelle
theorem or a combination of theorems.

2. Some rules correspond to a theory decision procedure.
3. Some rules can be reconstructed using a combination of inferences, decision procedures,

and heuristic proof procedures.
4. Some rules can be safely ignored, because they cannot appear in proofs of Isabelle-

generated goals.

The first category largely consists of rules for tautologies such as > (rule true), ¬⊥
(rule false), and (

∨
i vi)∨¬v j (rule or_neg), and basic properties of connectives. To recon-

struct these in Isabelle, we cannot simply apply the corresponding HOL theorems, because
veriT-generated formulas may remove double negations and duplicate literals, and they may
reorient equalities. Even the input rule, which references an existing assumption, might
introduce such modifications and therefore requires nontrivial work on the Isabelle side.

The second category most prominently includes arithmetic steps. We reuse the proof
method developed for the Z3 reconstruction [13]. It abstracts over nonarithmetic subterms
before invoking Isabelle’s procedure for linear arithmetic.

Rules belonging to the third category are the most difficult to reconstruct. For example,
the rule connective_equiv, which is described as “logical equivalence,” includes theory
rewriting and simple arithmetic. For these rules, we use general-purpose Isabelle automa-
tion, such as the auto proof method, which combines a tableau prover, a simplifier, and
arithmetic procedures.

For reference, the categorization of veriT’s rules is given below:

4 http://isabelle.in.tum.de/repos/isabelle/file/8050734eee3e/src/HOL/Tools/SMT/
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1. true, false, and_pos, and_neg, and_pos, and, not_and, not_or, or, or_pos, or_neg,
implies_pos, implies_neg1, implies_neg2,implies, not_implies1,
not_implies2, equiv1, equiv2, not_equiv1, not_equiv2, equiv_pos1, equiv_pos2,
equiv_neg1, equiv_neg2, ite_pos1, ite_pos2, ite_neg1, ite_neg2, ite1, ite2,
not_ite1, not_ite2, eq_reflexive, eq_transitive, eq_congruent,
eq_congruent_pred, refl, trans, la_totality, la_tautology, bind, qnt_join,
qnt_rm_unused, sko_ex, sko_forall, input, suproof, ite_intro;

2. la_rw_eq, la_generic, lia_generic, nla_generic, la_disequality,
th_resolution, resolution;

3. connective_equiv, tmp_AC_simp, tmp_bfun_elim, tmp_skolemize, qnt_simplify,
forall_inst;

4. xor_pos1, xor_pos2, xor_neg1, xor_neg2, distinct_elim, xor1, xor2, not_xor1,
not_xor2, let.

To test our integration, we attempted to replay the proofs from Isabelle’s SMT_Examples
theory file.5 This revealed some weaknesses in veriT’s output, which we quickly addressed.
Our integration now successfully reconstructs all 60 goals from SMT_Examples that do not
rely on Z3-specific extensions. Altogether, finding the proofs takes 1.1 s, whereas recon-
struction takes 5.4 s. The most prominent rule is cong (680 applications, replayed in 184 ms)
and (th)resolution (700 applications, replayed in 911 ms). The rule that takes the longest
to replay is la_generic (143 applications, 2256 ms). We initially reconstructed ite_intro

(13 applications) as a rule from the third category. We then optimized it, moving it to the
first category. The reconstruction time went down from 2753 ms to 15 ms.

For comparison, Z3 takes 1.1 s to find 68 proofs, and reconstruction takes 5.1 s. Z3
includes a rule, th-lemma, that indicates that the proposition was derived by theory-specific
means, without specifying which theory was used. Reconstructing such steps in Isabelle
amounts to testing various theories in turn. In this respect, veriT’s output is superior.

7 Related Work

Two chapters in the Handbook of Automated Reasoning [2, 39] are dedicated to aspects of
formula preprocessing. Reger et al. [42] describe a one-pass algorithm implemented in the
Vampire prover, together with an extension [29] to unfold ‘let’ expressions and “first-class”
Boolean constructs. The focus is on producing small formulas, quickly. In contrast, our
algorithm proceeds in several passes, with a focus on producing detailed, structured proofs.
We discussed in Sect. 4.5 how to adapt our algorithm to also proceed in one pass, but the
benefits of having a single pass do not necessarily compensate for the drawbacks.

Most automatic provers that support the TPTP syntax for problems generate proofs in
TSTP (Thousands of Solutions for Theorem Provers) format [46]. Like a veriT proof, a
TSTP proof consists of a list of inferences. TSTP does not mandate any inference system;
the meaning of the rules and the granularity of inferences vary across systems. For exam-
ple, the E prover [43] combines clausification, skolemization, and variable renaming into
a single inference, whereas Vampire [30] appears to cleanly separate preprocessing trans-
formations. SPASS’s [47] custom proof format does not record preprocessing steps; reverse
engineering is necessary to make sense of its output, and optimizations ought to be dis-
abled [10, Sect. 7.3].

5 http://isabelle.in.tum.de/repos/isabelle/file/44e1c9f93755/src/HOL/SMT_Examples/SMT_
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Most SMT solvers can parse the SMT-LIB [6] format, but each solver has its own out-
put syntax. Z3’s proofs can be quite detailed [35], but rewriting steps often combine many
rewrites rules. CVC4’s format is an instance of LF [26] with Side Conditions (LFSC) [44];
despite recent progress [25, 28], neither skolemization nor quantifier instantiation are cur-
rently recorded in the proofs. Proof production in Fx7 [34] is based on an inference system
whose formula processing fragment is subsumed by ours; for example, skolemization is
more ad hoc, and there is no explicit support for rewriting.

Proof assistants for dependent type theory, including Agda, Coq, Lean, and Matita, pro-
vide very precise proof terms that can be checked by relatively simple checkers, meeting
De Bruijn’s criterion [5]. Via the Curry–Howard correspondence, a proof term is a λ-term
whose type is the proposition it proves; for example, the term λx. x, of type A→ A, is a
proof that A implies A. Proof terms have also been implemented in Isabelle [8], but they
slow down the system and are normally disabled. Frameworks such as LF, LFSC, and De-
dukti [16] provide a way to specify inference systems and proof checkers based on proof
terms. Our encoding into λ-terms is vaguely reminiscent of LF. The encoded rules also bear
a superficial resemblance to deep inference [24].

Isabelle and the proof assistants from the HOL family (HOL4, HOL Light, HOL Zero,
and ProofPower–HOL) are based on the LCF architecture [22]. Theorems are represented
by an abstract data type. A small set of primitive inferences derives new theorems from
existing ones. This architecture is also the inspiration behind automatic systems such as
Psyche [23]. In Cambridge LCF, Paulson introduced an idiom, conversions, for expressing
rewriting strategies [40]. A conversion is an ML function from terms t to theorems of the
form t' u. Basic conversions perform β-reduction and other simple rewriting. Higher-order
functions combine conversions. Paulson’s conversion library culminates with a function that
replaces Edinburgh LCF’s monolithic simplifier. Conversions are still in use today in Isa-
belle and the HOL systems. They allow a style of programming that focuses on the terms to
rewrite—the proofs arise as a side effect. Our framework is related, but we trade programma-
bility for efficiency on very large problems. Remarkably, both Paulson’s conversions and our
framework emerged as replacements for earlier monolithic systems.

Over the years, there have been many attempts at integrating automatic provers into
proof assistants. To reach the highest standards of trustworthiness, some of these bridges
translate the proofs found by the automatic provers so that they can be checked by the proof
assistant, as we have done for Isabelle/HOL and veriT (Sect. 6.2). The TRAMP subsystem
of ΩMEGA is one of the finest examples [32]. For integrating superposition provers with
Coq, De Nivelle studied how to build efficient proof terms for clausification and skolemiza-
tion [37]. For SMT, the main integrations with proof reconstruction are CVC Lite in HOL
Light [31], haRVey (veriT’s predecessor) in Isabelle/HOL [20], Z3 in HOL4 and Isabelle/
HOL [12, 13], veriT in Coq [1], and CVC4 in Coq [19]. Some of these simulate the proofs
in the proof assistant using dedicated tactics, in the style of our checker. Others employ re-
flection, a technique whereby the checker is specified in the proof assistant’s formalism and
proved correct; in systems based on dependent type theory, this can help keep proof terms
to a manageable size. A third approach is to translate the SMT output into a proof text that
can be inserted in the user’s formalization; Isabelle/HOL supports Z3 and earlier versions of
veriT in this way [10].

Proof assistants are not the only programs used to check machine-generated proofs. Ot-
terfier [48] invokes the Otter prover to check TSTP proofs from various sources. GAPT
[18, 27] imports proofs generated by resolution provers with clausifiers to a sequent cal-
culus and uses other provers and solvers to transform the proofs. Dedukti’s λΠ-calculus
modulo [16] has been used to encode resolution and superposition proofs [15], among oth-
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ers. λProlog [33] provides a general proof-checking framework that allows nondeterminism,
enabling flexible combinations of proof search and proof checking.

8 Conclusion

We presented a framework to represent and generate proofs of formula processing and its
implementation in veriT and Isabelle/HOL. The framework centralizes the delicate issue
of manipulating bound variables and substitutions soundly and efficiently, and is flexible
enough to accommodate many interesting transformations. Although it was implemented in
an SMT solver, there appears to be no intrinsic limitation that would prevent its use in other
kinds of first-order, or even higher-order, automatic provers. The framework covers many
preprocessing techniques and can be part of a larger toolbox.

Detailed proofs have been a defining feature of veriT for many years. The solver now
produces more detailed justifications than ever, but there are still some global transforma-
tions for which the proofs are nonexistent or leave much to be desired. In particular, sup-
porting rewriting based on global assumptions would be essential for proof-producing in-
processing, and symmetry breaking would be interesting in its own right.
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