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Why proofs?

B to check the result for unsatisfiable/valid formulas

B for solver/prover cooperation

B as a debugging facility

B for evaluation purposes (how good is the algorithm?)

B as a part of the reasoning framework (e.g. conflict clauses)

B to extract cores

B to compute interpolants
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Challenges for proofs in FOL

B Collecting and storing proof information efficiently

no convergence, but quite active

[KBT+16; HBR+15; KV13; Sch13; BODF09; WDF+09; Mos08; MB08; SZS04]

B Producing proofs for sophisticated processing techniques

scalable fine-grained proofs

B Producing proofs for modules that use external tools

depends on tool

arbitrarily complex to reconstruct information

B Standardizing a proof format

open
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Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]
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What is hard about proofs for formula processing?

Resolution does not capture all transformations

Some transformations do not preserve logical equivalence

Code is lengthy and deals with many cases
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Proving formula processing

Extensible framework to represent proofs for processing techniques
involving locally replacing equals by equals in the presence of binders

Some instances:

Skolemization: (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

let elimination: (let x ' a in p(x, x)) ' p(a, a)

theory simplifications: (k + 1×0 < k) ' (k < k)

B Challenge is to manipulate bound variables and substitutions soundly
and efficiently
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Inference system

A context Γ fixes a set of variables and specifies a substitution

substitution

bound variable

Rules have the form

transformation assumptions

derivations of premises

B Semantically, the judgment expresses the equality of the terms Γ(t)
and u for all variables fixed by Γ
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Example of ‘let’ expansion

Cong
B a ' a

Refl
x 7→ a B x ' a

Refl
x 7→ a B x ' a

Cong
x 7→ a B p(x, x) ' p(a, a)

Let
B (let x ' a in p(x, x)) ' p(a, a)
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Example of theory simplification

Cong
B k ' k

Taut×
B 1×0 ' 0

Cong
B k+ 1×0 ' k+ 0

Taut+
B k+ 0 ' k

Trans
B k+ 1×0 ' k

Cong
B k ' k

Cong
B (k+ 1×0 < k) ' (k < k)

Scalable fine-grained proofs for formula processing 9 / 14



Output skolemization

The skolemization proof of the formula ¬∀x. p(x):

Refl
x 7→ εx. ¬ p(x) B x ' εx. ¬ p(x)

Cong
x 7→ εx. ¬ p(x) B p(x) ' p(εx. ¬ p(x))

Sko ∀
B (∀x. p(x)) ' p(εx. ¬ p(x))

Cong
B (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

veriT syntax:

(.c0 (Sko All :conclusion ((∀x. p(x)) ' p(εx. ¬ p(x)))
:args (x 7→ (εx. ¬ p(x)))
:subproof ((.c1 (Refl :conclusion (x ' (εx. ¬ p(x)))))

(.c2 (Cong :clauses (.c1)
:conclusion (p(x) ' p(εx. ¬ p(x))))))))

(.c3 (Cong :clauses (.c0) :conclusion ((¬∀x. p(x)) ' ¬ p(εx. ¬ p(x)))))
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Proof-producing contextual recursion

function process(∆, t)
match t

case x:
return build var(∆, x)

case f(t̄n):
∆̄′

n ← (ctx app(∆, f, t̄n, i))
n
i=1

return build app
(
∆, ∆̄′

n, f, t̄n, (process(∆′
i, ti))

n
i=1

)
case Qx. ϕ:

∆′ ← ctx quant(∆, Q, x, ϕ)
return build quant(∆, ∆′, Q, x, ϕ, process(∆′, ϕ))

case let x̄n ' r̄n in t′:
∆′ ← ctx let(∆, x̄n, r̄n, t

′)
return build let(∆, ∆′, x̄n, r̄n, t

′, process(∆′, t′))

B Parameterized by a notion of context and plugin functions
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Theoretical properties

Soundness of inference rules proven through an encoding into simply typed
λ-calculus

Correctness of proof-producing contextual recursion algorithm

Cost of proof production is linear and of proof checking is (almost) linear∗
∗ assuming suitable data structures
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Implementation

Proof output for veriT

Framework implemented with a proof-producing contextual recursion
algorithm

⊕ fine-grained proofs for most processing transformations

⊕ No negative impact on performance

⊕ More transformations in proof producing mode

⊕ Dramatic simplification of the code base

Prototype checker in Isabelle/HOL

Maps proofs into Isabelle theorems

⊕ Judgements encoded in λ-calculus
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Conclusions

B Centralizes manipulation of bound variables and substitutions

B Accommodates many transformations (e.g. Skolemization)

B Proof checking is (almost) linear

B Implementation and integration within veriT

Future work

B Support global rewritings within the framework

B Support richer logics (e.g. HOL)

B Implement proof reconstruction in Isabelle/HOL
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