Subtropical Satisfiability

Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, Xuan Tung Vu

Univ. of Lorraine, CNRS, Inria, LORIA Japan Advanced Institute of Science and Technology (JAIST) MPI Informatics and Saarland University

22-23 July, 2017

Presentation only (accepted FroCoS 2017)

SMT + non linear arithmetics

- High demand for non linear arithmetic reasoning capability
- Theory of real closed fields: decidable (QE: CAD, virtual substitution,...)
- Doubly exponential (existential fragment also high complexity)
- Complete decision procedure not always efficient enough
- Need for good heuristics

Our contribution

Simple heuristic to quickly discharge many proof obligations (or failing quickly)

- Based on subtropical method: quickly find positive solution for $f=0$ where f has hundreds of thousand of monomials, with dozen variables, degrees around 10 in each variable
- Here: find real solution for $f_{1}>0 \wedge \cdots \wedge f_{n}>0$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$
- $-1-2 x+x^{3}>0$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$
- $-1-2 x+x^{3}>0$, satisfiable: with sufficiently large x

$$
y=1-2 x+x^{3} \quad y=-1-2 x+x^{3}
$$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$
- $-1-2 x+x^{3}>0$, satisfiable: with sufficiently large x
- $2 x-x^{3}>0$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$
- $-1-2 x+x^{3}>0$, satisfiable: with sufficiently large x
- $2 x-x^{3}>0$, satisfiable: with sufficiently small x

$y=1-2 x+x^{3} \quad y=-1-2 x+x^{3} \quad y=2 x-x^{3}$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$
- $-1-2 x+x^{3}>0$, satisfiable: with sufficiently large x
- $2 x-x^{3}>0$, satisfiable: with sufficiently small x

Find a model for $f>0$?

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$
- $-1-2 x+x^{3}>0$, satisfiable: with sufficiently large x
- $2 x-x^{3}>0$, satisfiable: with sufficiently small x

Find a model for $f>0$?
Check coefficient sign for lowest or highest degree monomial

$y=1-2 x+x^{3} \quad y=-1-2 x+x^{3} \quad y=2 x-x^{3}$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$
- $-1-2 x+x^{3}>0$, satisfiable: with sufficiently large x
- $2 x-x^{3}>0$, satisfiable: with sufficiently small x

Find a model for $f>0$?
Check coefficient sign for lowest or highest degree monomial Incomplete: $-1+2 x-x^{3}>0$?

$$
y=1-2 x+x^{3} \quad y=-1-2 x+x^{3} \quad y=2 x-x^{3}
$$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$
- $-1-2 x+x^{3}>0$, satisfiable: with sufficiently large x
- $2 x-x^{3}>0$, satisfiable: with sufficiently small x

Find a model for $f>0$?
Check coefficient sign for lowest or highest degree monomial Incomplete: $-1+2 x-x^{3}>0$? $(x=0.8)$

Subtropical method: univariate case

Consider $x \geq 0$,

- $1-2 x+x^{3}>0$, satisfiable: $x=0$
- $-1-2 x+x^{3}>0$, satisfiable: with sufficiently large x
- $2 x-x^{3}>0$, satisfiable: with sufficiently small x

Find a model for $f>0$?
Check coefficient sign for lowest or highest degree monomial Incomplete: $-1+2 x-x^{3}>0$? $(x=0.8)$
But certainly quick

Subtropical method: towards the multivariate case

Polynomial $-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}$ can be

- negative, e.g. $-2 x_{1}^{5}$ dominates if x_{1} large enough w.r.t. x_{2}
- positive, e.g. $2 x_{2}^{2}$ dominates if x_{2} small enough (not zero) x_{2} and an even smaller x_{1}.

Subtropical method: towards the multivariate case

Polynomial $-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}$ can be

- negative, e.g. $-2 x_{1}^{5}$ dominates if x_{1} large enough w.r.t. x_{2}
- positive, e.g. $2 x_{2}^{2}$ dominates if x_{2} small enough (not zero) x_{2} and an even smaller x_{1}.
Extending to multivariate case?
- reduce to univariate, setting all variables but one to 0
- consider monomial of highest/lowest total degree (if unique)
- ordering? lexicographic?

Subtropical method: towards the multivariate case

Polynomial $-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}$ can be

- negative, e.g. $-2 x_{1}^{5}$ dominates if x_{1} large enough w.r.t. x_{2}
- positive, e.g. $2 x_{2}^{2}$ dominates if x_{2} small enough (not zero) x_{2} and an even smaller x_{1}.
Extending to multivariate case?
- reduce to univariate, setting all variables but one to 0
- consider monomial of highest/lowest total degree (if unique)
- ordering? lexicographic?

Contribution

monotonic total preorders on the exponent vectors

Strictly max. monomials (w.r.t. these preorders) can dominate, for suitable (positive) values of variables.

Subtropical method: towards the multivariate case (2)

A reminder of the original method

Strictly max. monomials (w.r.t. monotonic total preorders on the exponent vectors) can dominate, for suitable (positive) values of variables.

Subtropical method: towards the multivariate case (2)

A reminder of the original method

Strictly max. monomials (w.r.t. monotonic total preorders on the exponent vectors) can dominate, for suitable (positive) values of variables.
Equivalent to consider the vertices of the Newton polytope, i.e. the set of exponent vectors.

Subtropical method: towards the multivariate case (2)

A reminder of the original method

Strictly max. monomials (w.r.t. monotonic total preorders on the exponent vectors) can dominate, for suitable (positive) values of variables.
Equivalent to consider the vertices of the Newton polytope, i.e. the set of exponent vectors.

$$
f=-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
$$

Subtropical method: towards the multivariate case (2)

A reminder of the original method

Strictly max. monomials (w.r.t. monotonic total preorders on the exponent vectors) can dominate, for suitable (positive) values of variables.
Equivalent to consider the vertices of the Newton polytope, i.e. the set of exponent vectors.

$$
f=-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
$$

Subtropical method: towards the multivariate case (2)

A reminder of the original method

Strictly max. monomials (w.r.t. monotonic total preorders on the exponent vectors) can dominate, for suitable (positive) values of variables.
Equivalent to consider the vertices of the Newton polytope, i.e. the set of exponent vectors.

- $-2 x_{1}^{5},-3 x_{1}^{2},-x_{2}^{3}$ and $2 x_{2}^{2}$ correspond to vertices

$$
f=-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
$$

Subtropical method: towards the multivariate case (2)

A reminder of the original method

Strictly max. monomials (w.r.t. monotonic total preorders on the exponent vectors) can dominate, for suitable (positive) values of variables.
Equivalent to consider the vertices of the Newton polytope, i.e. the set of exponent vectors.

- $-2 x_{1}^{5},-3 x_{1}^{2},-x_{2}^{3}$ and $2 x_{2}^{2}$ correspond to vertices

$$
f=-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
$$

- These monomials can dominate for suitable values of variables

Subtropical method: towards the multivariate case (2)

A reminder of the original method

Strictly max. monomials (w.r.t. monotonic total preorders on the exponent vectors) can dominate, for suitable (positive) values of variables.
Equivalent to consider the vertices of the Newton polytope, i.e. the set of exponent vectors.

- $-2 x_{1}^{5},-3 x_{1}^{2},-x_{2}^{3}$ and $2 x_{2}^{2}$ correspond to vertices

$$
f=-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
$$

- These monomials can dominate for suitable values of variables
- Normal vector of separating plane provides witnesses

Subtropical method: towards the multivariate case (2)

A reminder of the original method

Strictly max. monomials (w.r.t. monotonic total preorders on the exponent vectors) can dominate, for suitable (positive) values of variables.
Equivalent to consider the vertices of the Newton polytope, i.e. the set of exponent vectors.

- $-2 x_{1}^{5},-3 x_{1}^{2},-x_{2}^{3}$ and $2 x_{2}^{2}$ correspond to vertices

$$
f=-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
$$

- These monomials can dominate for suitable values of variables
- Normal vector of separating plane provides witnesses
- E.g. $f>0$ for $x_{1}=t^{-3}, x_{2}=t^{-2}$
 with t sufficiently large

Subtropical method: from preorders to QF_LRA SMT

$$
f=-2 x_{1}^{5}+x_{1}^{2} x_{2}-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
$$

monotonic total preorders correspond to normal vectors

- $\left(x_{1}, x_{2}\right) \preceq\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ iff $-3 x_{1}-2 x_{2} \leq-3 x_{1}^{\prime}-2 x_{2}^{\prime}$
- $(5,0) \prec(2,1) \prec(2,0) \approx(0,3) \prec(0,2)$

To QF_LRA SMT?

- $\mathcal{S}^{+}=\{(2,1),(0,2)\}, \mathcal{S}^{-}=\{(5,0),(2,0),(0,3)\}$
$f>0 \longleftrightarrow \bigwedge_{\left(p_{1}, p_{2}\right) \in \mathcal{S}^{-}} p_{1} n_{1}+p_{2} n_{2}+c<0 \wedge \bigvee_{\left(p_{1}, p_{2}\right) \in \mathcal{S}^{+}} p_{1} n_{1}+p_{2} n_{2}+c>0$
- linear constraints on real variables, n_{1}, n_{2}, c

Several polynomials

One polynomial:

$$
\begin{array}{r}
f_{1}=-2 x_{1}^{5}+x_{1}^{2} x_{2} \\
\quad-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
\end{array}
$$

Several polynomials

One polynomial:

- build the Newton polytope

$$
\begin{array}{r}
f_{1}=-2 x_{1}^{5}+x_{1}^{2} x_{2} \\
\quad-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
\end{array}
$$

Several polynomials

One polynomial:

- build the Newton polytope
- find a suitable vertex

$$
\begin{array}{r}
f_{1}=-2 x_{1}^{5}+x_{1}^{2} x_{2} \\
\quad-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
\end{array}
$$

Several polynomials

One polynomial:

- build the Newton polytope
- find a suitable vertex
- normal vector to separating plane provides witness

$$
\begin{array}{r}
f_{1}=-2 x_{1}^{5}+x_{1}^{2} x_{2} \\
\quad-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
\end{array}
$$

$$
\begin{gathered}
f_{1}>0 \\
\text { if } x_{1}=t^{-3}, x_{2}=t^{-2} \\
(t \text { sufficiently large })
\end{gathered}
$$

Several polynomials

One polynomial:

Several polynomials:

- build the Newton polytope
- find a suitable vertex
- normal vector to separating plane provides witness

$$
\begin{array}{rrc}
f_{1}=-2 x_{1}^{5}+x_{1}^{2} x_{2} & f_{2}=1-x_{1} x_{2} & f_{3}=x_{1} x_{2} \\
-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2} & -5 x_{1}-6 x_{2} & -x_{1}^{5} x_{2}^{2}+x_{1} x_{2}^{4}
\end{array}
$$

Several polynomials

One polynomial:

- build the Newton polytope

Several polynomials:

- build the Newton polytopes
- find a suitable vertex
- normal vector to separating plane provides witness

$$
\begin{array}{rrc}
f_{1}=-2 x_{1}^{5}+x_{1}^{2} x_{2} & f_{2}=1-x_{1} x_{2} & f_{3}=x_{1} x_{2} \\
-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2} & -5 x_{1}-6 x_{2} & -x_{1}^{5} x_{2}^{2}+x_{1} x_{2}^{4}
\end{array}
$$

Several polynomials

One polynomial:

- build the Newton polytope
- find a suitable vertex
- normal vector to separating plane provides witness

$$
\begin{array}{r}
f_{1}=-2 x_{1}^{5}+x_{1}^{2} x_{2} \\
-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
\end{array}
$$

$$
f_{2}=1-x_{1} x_{2}
$$

$$
\begin{gathered}
f_{3}=x_{1} x_{2} \\
-x_{1}^{5} x_{2}^{2}+x_{1} x_{2}^{4}
\end{gathered}
$$

Several polynomials

One polynomial:

- build the Newton polytope
- find a suitable vertex
- normal vector to separating plane provides witness

Several polynomials:

- build the Newton polytopes
- find suitable vertices
- normal vector to separating plane provides witness

$$
\begin{aligned}
& f_{1}=-2 x_{1}^{5}+x_{1}^{2} x_{2} \\
& \quad-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2}
\end{aligned}
$$

$$
\begin{array}{r}
f_{2}=1-x_{1} x_{2} \\
-5 x_{1}-6 x_{2}
\end{array}
$$

$f_{1}>0$
if $x_{1}=t^{-3}, x_{2}=t^{-2}$
$(t$ sufficiently large $)$
$f_{1}>0$
if $x_{1}=t^{-3}, x_{2}=t^{-2}$
$(t$ sufficiently large $)$

$f_{2}>0$
if $x_{1}=t^{-3}, x_{2}=t^{-2}$
$(t$ sufficiently large $)$

$$
\begin{gathered}
f_{3}=x_{1} x_{2} \\
-x_{1}^{5} x_{2}^{2}+x_{1} x_{2}^{4}
\end{gathered}
$$

$$
\begin{gathered}
f_{3}>0 \\
\text { if } x_{1}=t^{-3}, x_{2}=t^{-2} \\
(t \text { sufficiently large })
\end{gathered}
$$

Several polynomials

One polynomial:

- build the Newton polytope
- find a suitable vertex
- normal vector to separating plane provides witness

Several polynomials:

- build the Newton polytopes
- find suitable vertices
- normal vector to separating plane provides witness

$$
\begin{array}{rrc}
f_{1}=-2 x_{1}^{5}+x_{1}^{2} x_{2} & f_{2}=1-x_{1} x_{2} & f_{3}=x_{1} x_{2} \\
-3 x_{1}^{2}-x_{2}^{3}+2 x_{2}^{2} & -5 x_{1}-6 x_{2} & -x_{1}^{5} x_{2}^{2}+x_{1} x_{2}^{4}
\end{array}
$$

$$
\begin{gathered}
f_{1}>0 \\
\text { if } x_{1}=t^{-3}, x_{2}=t^{-2}
\end{gathered}
$$

(t sufficiently large)

$f_{2}>0$
if $x_{1}=t^{-3}, x_{2}=t^{-2}$
(t sufficiently large)
if $x_{1}=t^{-3}, x_{2}=t^{-2}$

(t sufficiently large)
common normal vector ensures existence of global solution

Several polynomials

One polynomial:

- build the Newton polytope
- find a suitable vertex
- normal vector to separating plane provides witness

Several polynomials:

- build the Newton polytopes
- find suitable vertices
- normal vector to separating plane provides witness

$$
f_{2}=1-x_{1} x_{2}
$$

$$
-5 x_{1}-6 x_{2}
$$

$$
\begin{gathered}
f_{3}=x_{1} x_{2} \\
-x_{1}^{5} x_{2}^{2}+x_{1} x_{2}^{4}
\end{gathered}
$$

(t sufficiently large)

$f_{2}>0$
if $x_{1}=t^{-3}, x_{2}=t^{-2}$
$(t$ sufficiently large $)$

$f_{3}>0$
if $x_{1}=t^{-3}, x_{2}=t^{-2}$
$(t$ sufficiently large $)$
common normal vector ensures existence of global solution
n polynomial constraints? Conjunction of n QF_LRA problems sharing only variables to describe normal vector

From positive to arbitrary solution

- Up to now: $\bigwedge_{i} f_{i}>0$ with all $\bigwedge_{i} x_{i}>0$

$$
f(x, y)>0
$$

From positive to arbitrary solution

- Up to now: $\bigwedge_{i} f_{i}>0$ with all $\bigwedge_{i} x_{i}>0$
- Removing the condition $\wedge_{i} x_{i}>0$?

From positive to arbitrary solution

- Up to now: $\bigwedge_{i} f_{i}>0$ with all $\bigwedge_{i} x_{i}>0$
- Removing the condition $\wedge_{i} x_{i}>0$?
- Just consider every hyper-quadrant

From positive to arbitrary solution

- Up to now: $\bigwedge_{i} f_{i}>0$ with all $\bigwedge_{i} x_{i}>0$
- Removing the condition $\wedge_{i} x_{i}>0$?
- Just consider every hyper-quadrant

$f(x, y)>0$

From positive to arbitrary solution

- Up to now: $\bigwedge_{i} f_{i}>0$ with all $\bigwedge_{i} x_{i}>0$
- Removing the condition $\wedge_{i} x_{i}>0$?
- Just consider every hyper-quadrant

$f(x, y)>0$

$f\left(-x^{\prime}, y\right)>0$

From positive to arbitrary solution

- Up to now: $\bigwedge_{i} f_{i}>0$ with all $\bigwedge_{i} x_{i}>0$
- Removing the condition $\wedge_{i} x_{i}>0$?
- Just consider every hyper-quadrant
- This can be encoded into the QF_LRA SMT problem; no need to check 2^{n} formulas

$f(x, y)>0$

$f\left(-x^{\prime}, y\right)>0$

Experimental results

- STROPSAT integrated in veriT (not the SMT-COMP version)
- Tested on SMT-LIB/QF_NRA on suitable problems, i.e. 4917/11601 files: 3265 sat, 106 unknown, 1546 unsat
- CVC4 used to handle linear solving
- 2500s timeout, 20GB

On 1546 unsat-labeled formulas: 200 unsat by LRA, cumulative time to fail on the 1346 others: 18.45 s , max 0.1 s
Shows satisfiability for 2403 problems, including 15 "unknown" problems (and 9 where Z3 fails)

Experimental results

When STROPSAT does not fail

STROPSAT is quick to fail

- time comparable to Z3
- sometimes succeeds alone
- if timeouts, Z3 too

Conclusion

- A heuristic, providing quick solutions, or failing quickly
- Good results for many SMT benchmarks
- Not sensitive to the number of variables; actually, gets "better" when the number of variables grows
- Investigate its use in context where getting models is paramount, i.e. testing phase of raSAT loop
- What can we do along these lines to help complete decision procedures?
- Better understand when the method works

Advertisement

Symbolic Computation and Satisfiability Checking http://www.sc-square.org/

