
New techniques for instantiation and proof production
in SMT solving

Haniel Barbosa

University of Lorraine, CNRS, Inria, LORIA, Nancy, France

PPgSC, DIMAp, UFRN, Natal, Brazil

Advisors: Pascal Fontaine, David Déharbe, and Stephan Merz

PhD defense

2017–09–05, Nancy, France

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

Automated
Reasoning

PhD defense 1 / 33

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

SMT
Solvers

PhD defense 1 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

PhD defense 2 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

Clausified formula:

ϕ′ = a ≤ b∧ b ≤ a+x∧x ' 0∧ [f(a) 6' f(b)∨ q(a)]∧ [f(a) 6' f(b)∨¬q(b+x)]

PhD defense 2 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

Clausified formula:

ϕ′ = a ≤ b∧ b ≤ a+x∧x ' 0∧ [f(a) 6' f(b)∨ q(a)]∧ [f(a) 6' f(b)∨¬q(b+x)]

Propositional abstraction:

abs(ϕ′) = pa≤b ∧ pb≤a+x ∧ px'0 ∧ (¬pf(a)'f(b) ∨ pq(a))∧ (¬pf(a)'f(b) ∨¬pq(b+x))

PhD defense 2 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

Clausified formula:

ϕ′ = a ≤ b∧ b ≤ a+x∧x ' 0∧ [f(a) 6' f(b)∨ q(a)]∧ [f(a) 6' f(b)∨¬q(b+x)]

Propositional abstraction:

abs(ϕ′) = pa≤b ∧ pb≤a+x ∧ px'0 ∧ (¬pf(a)'f(b) ∨ pq(a))∧ (¬pf(a)'f(b) ∨¬pq(b+x))

Satisfying assignment:

{pa≤b, pb≤a+x, px'0, ¬pf(a)'f(b)} ⇒ {a ≤ b, b ≤ a+ x, x ' 0, f(a) 6' f(b)}

PhD defense 2 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

Clausified formula:

ϕ′ = a ≤ b∧ b ≤ a+x∧x ' 0∧ [f(a) 6' f(b)∨ q(a)]∧ [f(a) 6' f(b)∨¬q(b+x)]

Propositional abstraction:

abs(ϕ′) = pa≤b ∧ pb≤a+x ∧ px'0 ∧ (¬pf(a)'f(b) ∨ pq(a))∧ (¬pf(a)'f(b) ∨¬pq(b+x))

Satisfying assignment:

{pa≤b, pb≤a+x, px'0, ¬pf(a)'f(b)} ⇒ {a ≤ b, b ≤ a+ x, x ' 0, f(a) 6' f(b)}

Conflict clause: ¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ f(a) ' f(b)

PhD defense 2 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

Clausified formula:

ϕ′ = a ≤ b∧ b ≤ a+x∧x ' 0∧ [f(a) 6' f(b)∨ q(a)]∧ [f(a) 6' f(b)∨¬q(b+x)]

ϕ′′ = ϕ′ ∧ ¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ f(a) ' f(b)

PhD defense 2 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

Clausified formula:

ϕ′ = a ≤ b∧ b ≤ a+x∧x ' 0∧ [f(a) 6' f(b)∨ q(a)]∧ [f(a) 6' f(b)∨¬q(b+x)]

ϕ′′ = ϕ′ ∧ ¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ f(a) ' f(b)

Satisfying assignment: {a ≤ b, b ≤ a+ x, x ' 0, q(a), ¬q(b+ x)}

PhD defense 2 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

Clausified formula:

ϕ′ = a ≤ b∧ b ≤ a+x∧x ' 0∧ [f(a) 6' f(b)∨ q(a)]∧ [f(a) 6' f(b)∨¬q(b+x)]

ϕ′′ = ϕ′ ∧ ¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ f(a) ' f(b)

Satisfying assignment: {a ≤ b, b ≤ a+ x, x ' 0, q(a), ¬q(b+ x)}

Conflict clause: ¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ ¬q(a) ∨ q(b+ x)

PhD defense 2 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

Clausified formula:

ϕ′ = a ≤ b∧ b ≤ a+x∧x ' 0∧ [f(a) 6' f(b)∨ q(a)]∧ [f(a) 6' f(b)∨¬q(b+x)]

ϕ′′ = ϕ′ ∧ ¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ f(a) ' f(b)

ϕ′′′ = ϕ′′ ∧ ¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ ¬q(a) ∨ q(b+ x)

UNSAT!

PhD defense 2 / 33

Problem statement

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

Clausified formula:

ϕ′ = a ≤ b∧ b ≤ a+x∧x ' 0∧ [f(a) 6' f(b)∨ q(a)]∧ [f(a) 6' f(b)∨¬q(b+x)]

ϕ′′ = ϕ′ ∧ ¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ f(a) ' f(b)

ϕ′′′ = ϕ′′ ∧ ¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ ¬q(a) ∨ q(b+ x)

UNSAT!

PhD defense 2 / 33

Problem statement

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

SAT (model) UNSAT (proof/core)

Quantifier-free solver enumerates models E

I E is a set of ground literals {a ≤ b, b ≤ a+ x, x ' 0, f(a) 6' f(b)}

I Q is a set of quantified clauses {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

Instantiation module generates instances of Q f(a) 6' f(b) ∨ g(a) ' h(b)

PhD defense 3 / 33

Problem statement

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

SAT (model) UNSAT (proof/core)

Quantifier-free solver enumerates models E ∪Q
I E is a set of ground literals {a ≤ b, b ≤ a+ x, x ' 0, f(a) 6' f(b)}

I Q is a set of quantified clauses {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

Instantiation module generates instances of Q f(a) 6' f(b) ∨ g(a) ' h(b)

PhD defense 3 / 33

Contributions

A unifying framework for instantiating quantified formulas with equality
and uninterpreted functions [B., Fontaine, Reynolds. TACAS’17]

(I1) Formalizing underlying problem for instantiation in SMT

(I2) Lifting congruence closure to accommodate free variables

(I3) Casting existing instantiation techniques in framework

(I4) Techniques for efficient implementation

PhD defense 4 / 33

Contributions

Scalable fine-grained proofs for formula processing
[B., Blanchette, Fontaine. CADE’17]

(P1) Extensible inference system for formula processing

(P2) Proof producing generic contextual recursion algorithm

(P3) Proving desirable properties of rules and algorithms

(P4) Validation of framework through implementation and prototype checker

PhD defense 5 / 33

Contribution 1: A unifying framework for instantiating quantified
formulas with equality and uninterpreted functions

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

SAT (model) UNSAT (proof/core)

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

for ∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z) a pattern is {f(x), g(y), h(z)}

� Fast, but too many instances
E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

PhD defense 6 / 33

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

for ∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z) a pattern is {f(x), g(y), h(z)}

� Fast, but too many instances
E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

PhD defense 6 / 33

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

for ∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z) a pattern is {f(x), g(y), h(z)}

� Fast, but too many instances
E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

PhD defense 6 / 33

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

for ∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z) a pattern is {f(x), g(y), h(z)}

� Fast, but too many instances
E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

PhD defense 6 / 33

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

for ∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z) a pattern is {f(x), g(y), h(z)}

� Fast, but too many instances
E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

PhD defense 6 / 33

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

for ∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z) a pattern is {f(x), g(y), h(z)}

� Fast, but too many instances
E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

PhD defense 6 / 33

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

for ∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z) a pattern is {f(x), g(y), h(z)}

� Fast, but too many instances
E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!

PhD defense 6 / 33

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

If {f(a) ' f(c), g(b) 6' h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)→ f(a) 6' f(c) ∨ g(b) ' h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

PhD defense 7 / 33

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

If {f(a) ' f(c), g(b) 6' h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)→ f(a) 6' f(c) ∨ g(b) ' h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

PhD defense 7 / 33

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

If {f(a) ' f(c), g(b) 6' h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)→ f(a) 6' f(c) ∨ g(b) ' h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

PhD defense 7 / 33

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

If {f(a) ' f(c), g(b) 6' h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)→ f(a) 6' f(c) ∨ g(b) ' h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

PhD defense 7 / 33

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

If {f(a) ' f(c), g(b) 6' h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)→ f(a) 6' f(c) ∨ g(b) ' h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

PhD defense 7 / 33

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

If {f(a) ' f(c), g(b) 6' h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)→ f(a) 6' f(c) ∨ g(b) ' h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

PhD defense 7 / 33

Previous work

Conflict-based instantiation [RTM14]

B Given a model E ∪Q, for some ∀x̄. ψ ∈ Q find σ s.t. E ∧ ψσ |= ⊥
B Add instance ∀x̄. ψ → ψσ to quantifier-free solver

Finding conflicting instances requires deriving σ s.t.

E |= ¬ψσ

⊕ Goal-oriented

⊕ Efficient

� Ad-hoc

� Incomplete

PhD defense 8 / 33

Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

PhD defense 9 / 33

Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

PhD defense 9 / 33

Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

PhD defense 9 / 33

Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

PhD defense 9 / 33

Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

PhD defense 9 / 33

Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

PhD defense 9 / 33

Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

PhD defense 9 / 33

Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

PhD defense 9 / 33

Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(c), g(b) 6' h(c)}, Q = {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}

PhD defense 9 / 33

E-ground (dis)unification
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

Given conjunctive sets of equality literals E and L, with E ground, finding
a substitution σ s.t. E |= Lσ

B Solution space can be restricted into ground terms from E ∪ L

B NP-complete

NP: solutions can checked in polynomial time
NP-hard: reduction of 3-SAT into the entailment

B Variant of classic (non-simultaneous) rigid E-unification

s1σ ' t1σ, . . . , snσ ' tnσ |= uσ ' vσ

PhD defense 10 / 33

E-ground (dis)unification
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

Given conjunctive sets of equality literals E and L, with E ground, finding
a substitution σ s.t. E |= Lσ

B Solution space can be restricted into ground terms from E ∪ L

B NP-complete

NP: solutions can checked in polynomial time
NP-hard: reduction of 3-SAT into the entailment

B Variant of classic (non-simultaneous) rigid E-unification

s1σ ' t1σ, . . . , snσ ' tnσ |= uσ ' vσ

PhD defense 10 / 33

E-ground (dis)unification
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

Given conjunctive sets of equality literals E and L, with E ground, finding
a substitution σ s.t. E |= Lσ

B Solution space can be restricted into ground terms from E ∪ L

B NP-complete

NP: solutions can checked in polynomial time
NP-hard: reduction of 3-SAT into the entailment

B Variant of classic (non-simultaneous) rigid E-unification

s1σ ' t1σ, . . . , snσ ' tnσ |= uσ ' vσ

PhD defense 10 / 33

E-ground (dis)unification
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

Given conjunctive sets of equality literals E and L, with E ground, finding
a substitution σ s.t. E |= Lσ

B Solution space can be restricted into ground terms from E ∪ L

B NP-complete

NP: solutions can checked in polynomial time
NP-hard: reduction of 3-SAT into the entailment

B Variant of classic (non-simultaneous) rigid E-unification

s1σ ' t1σ, . . . , snσ ' tnσ |= uσ ' vσ

PhD defense 10 / 33

Congruence Closure with Free Variables
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and
terminating calculus for solving E-ground (dis)unification

⊕ Goal-oriented

⊕ Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula

PhD defense 11 / 33

Congruence Closure with Free Variables
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and
terminating calculus for solving E-ground (dis)unification

⊕ Goal-oriented

⊕ Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula

PhD defense 11 / 33

Congruence Closure with Free Variables
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and
terminating calculus for solving E-ground (dis)unification

⊕ Goal-oriented

⊕ Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula

PhD defense 11 / 33

Existing techniques as special cases
Contributions [TACAS’17]

(I3) Casting existing instantiation
techniques in framework

B Conflict-based instantiation [RTM14]

⊕ CCFV provides formal guarantees and more clear extensions

B E-matching based heuristic instantiation [DNS05; MB07]

⊕ CCFV allows to easily discard instances already entailed by E

B Model-based instantiation [GM09; RTG+13]

⊕ No need for a secondary ground SMT solver
⊕ No need to guess solutions

PhD defense 12 / 33

Finding solutions σ for E |= Lσ
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

PhD defense 13 / 33

Finding solutions σ for E |= Lσ
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

PhD defense 13 / 33

Finding solutions σ for E |= Lσ
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

PhD defense 13 / 33

Finding solutions σ for E |= Lσ
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

PhD defense 13 / 33

Finding solutions σ for E |= Lσ
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

PhD defense 13 / 33

Finding solutions σ for E |= Lσ
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

PhD defense 13 / 33

Finding solutions σ for E |= Lσ
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅

PhD defense 13 / 33

Implementation Contributions [TACAS’17]

(I4) Techniques for efficient implementation

B Model minimisation

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

E |= f(x)σ ' t only if [t] contains some f(t′)

f →

f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t

′
n])

I Bitsets for fast checking if a symbol has applications in a
congruence class

PhD defense 14 / 33

Implementation Contributions [TACAS’17]

(I4) Techniques for efficient implementation

B Model minimisation

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

E |= f(x)σ ' t only if [t] contains some f(t′)

f →

f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t

′
n])

I Bitsets for fast checking if a symbol has applications in a
congruence class

PhD defense 14 / 33

Implementation Contributions [TACAS’17]

(I4) Techniques for efficient implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ . . .

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized

E |= f(t, y) ' h(z) ∧ . . .

I E |= f(t, y)σ ' h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ' t′

PhD defense 15 / 33

Implementation Contributions [TACAS’17]

(I4) Techniques for efficient implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ . . .

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized

E |= f(t, y) ' h(z) ∧ . . .

I E |= f(t, y)σ ' h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ' t′

PhD defense 15 / 33

Implementation Contributions [TACAS’17]

(I4) Techniques for efficient implementation

A breadth-first implementation of CCFV:

B Explores sets of solutions at a time

E |= `1 ∧ . . . ∧ `n
↓ ↓
S1 u . . . u Sn individual solutions for each literal︸ ︷︷ ︸

S combination of compatible solutions

⊕ Heavy use of memoization

� Bottleneck in merging solution sets

PhD defense 16 / 33

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems
* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 30s timeout.

PhD defense 17 / 33

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

The depth-first CCFV outperforms its breadth-first counterpart by a
small margin.

Both perform well and are viable approaches

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 100s timeout.

PhD defense 18 / 33

Summary
Contributions [TACAS’17]

A unifying framework for quantified formulas
with equality and uninterpreted functions

B Formalizing underlying problem for instantiation in SMT

B Lifting congruence closure to accommodate free variables

B Casting existing instantiation techniques in framework

B Efficient implementations in the SMT solvers veriT and CVC4

Extensions

B Incrementality

B Learning-based search for solutions

B Finding conflicting instances across multiple quantified formulas

E |= ¬ψ1σ ∨ · · · ∨ ¬ψnσ, ∀x̄. ψ ∈ Q

B Beyond theory of equality

B Handle variables in E

PhD defense 19 / 33

Summary
Contributions [TACAS’17]

A unifying framework for quantified formulas
with equality and uninterpreted functions

B Formalizing underlying problem for instantiation in SMT

B Lifting congruence closure to accommodate free variables

B Casting existing instantiation techniques in framework

B Efficient implementations in the SMT solvers veriT and CVC4

Extensions

B Incrementality

B Learning-based search for solutions

B Finding conflicting instances across multiple quantified formulas

E |= ¬ψ1σ ∨ · · · ∨ ¬ψnσ, ∀x̄. ψ ∈ Q

B Beyond theory of equality

B Handle variables in E

PhD defense 19 / 33

Contribution 2: Scalable fine-grained proofs for formula processing

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

SAT (model) UNSAT (proof/core)

Proofs

Why proofs?

B to check the result for unsatisfiable/valid formulas

B for solver/prover cooperation

B as a debugging facility

B for evaluation purposes (how good is the algorithm?)

B as a part of the reasoning framework (e.g. conflict clauses)

B to extract cores

B to compute interpolants

PhD defense 20 / 33

Challenges for proofs in FOL

B Collecting and storing proof information efficiently

no convergence, but quite active

[KBT+16; HBR+15; MB08; BODF09; SZS04; Sch13; KV13; WDF+09]

B Producing proofs for sophisticated processing techniques

scalable fine-grained proofs

B Producing proofs for modules that use external tools

depends on tool

B Standardizing a proof format

open

PhD defense 21 / 33

Challenges for proofs in FOL

B Collecting and storing proof information efficiently
no convergence, but quite active

[KBT+16; HBR+15; MB08; BODF09; SZS04; Sch13; KV13; WDF+09]

B Producing proofs for sophisticated processing techniques
proofs with holes or too coarse

scalable fine-grained proofs

B Producing proofs for modules that use external tools
depends on tool

B Standardizing a proof format
open

PhD defense 21 / 33

Challenges for proofs in FOL

B Collecting and storing proof information efficiently
no convergence, but quite active

[KBT+16; HBR+15; MB08; BODF09; SZS04; Sch13; KV13; WDF+09]

B Producing proofs for sophisticated processing techniques
proofs with holes or too coarse scalable fine-grained proofs

B Producing proofs for modules that use external tools
depends on tool

B Standardizing a proof format
open

PhD defense 21 / 33

Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]

PhD defense 22 / 33

Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]

PhD defense 22 / 33

Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]

PhD defense 22 / 33

Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]

PhD defense 22 / 33

Proving formula processing

� Resolution does not capture all transformations

� Some transformations do not preserve logical equivalence

� Code is lengthy and deals with many cases

� Difficult to manipulate binders soundly and efficiently

Extensible framework to produce proofs for processing techniques involving
locally replacing equals by equals in the presence of binders

Some instances:

Skolemization: (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

let elimination: (let x ' a in p(x, x)) ' p(a, a)

theory simplifications: (k + 1×0 < k) ' (k < k)

PhD defense 23 / 33

Proving formula processing Contributions [CADE’17]

Scalable fine-grained proofs for formula processing

� Resolution does not capture all transformations

� Some transformations do not preserve logical equivalence

� Code is lengthy and deals with many cases

� Difficult to manipulate binders soundly and efficiently

Extensible framework to produce proofs for processing techniques involving
locally replacing equals by equals in the presence of binders

Some instances:

Skolemization: (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

let elimination: (let x ' a in p(x, x)) ' p(a, a)

theory simplifications: (k + 1×0 < k) ' (k < k)

PhD defense 24 / 33

Inference system
Contributions [CADE’17]

(P1) Extensible inference system
for formula processing

A context Γ fixes a set of variables and specifies a substitution

substitution

bound variable

Rules have the form

transformation assumptions

derivations of premises

B Semantically, the judgement expresses the equality of the terms Γ(t)
and u for all variables fixed by Γ

PhD defense 25 / 33

Inference system
Contributions [CADE’17]

(P1) Extensible inference system
for formula processing

A context Γ fixes a set of variables and specifies a substitution

substitution

bound variable

Rules have the form

transformation assumptions

derivations of premises

B Semantically, the judgement expresses the equality of the terms Γ(t)
and u for all variables fixed by Γ

PhD defense 25 / 33

Example of ‘let’ expansion
Contributions [CADE’17]

(P1) Extensible inference system
for formula processing

Cong
B a ' a

Refl
x 7→ a B x ' a

Refl
x 7→ a B x ' a

Cong
x 7→ a B p(x, x) ' p(a, a)

Let
B (let x ' a in p(x, x)) ' p(a, a)

PhD defense 26 / 33

Example of theory simplification
Contributions [CADE’17]

(P1) Extensible inference system
for formula processing

Cong
B k ' k

Taut×
B 1×0 ' 0

Cong
B k + 1×0 ' k + 0

Taut+
B k + 0 ' k

Trans
B k + 1×0 ' k

Cong
B k ' k

Cong
B (k + 1×0 < k) ' (k < k)

PhD defense 27 / 33

Example of skolemization
Contributions [CADE’17]

(P1) Extensible inference system
for formula processing

The skolemization proof of the formula ¬∀x. p(x):

Refl
x 7→ εx. ¬ p(x) B x ' εx. ¬ p(x)

Cong
x 7→ εx. ¬ p(x) B p(x) ' p(εx. ¬ p(x))

Sko ∀
B (∀x. p(x)) ' p(εx. ¬ p(x))

Cong
B (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

veriT syntax:

(.c0 (Sko All :conclusion ((∀x. p(x)) ' p(εx. ¬ p(x)))
:args (x 7→ (εx. ¬ p(x)))
:subproof ((.c1 (Refl :conclusion (x ' (εx. ¬ p(x)))))

(.c2 (Cong :clauses (.c1)
:conclusion (p(x) ' p(εx. ¬ p(x))))))))

(.c3 (Cong :clauses (.c0) :conclusion ((¬∀x. p(x)) ' ¬ p(εx. ¬ p(x)))))

PhD defense 28 / 33

Proof-producing contextual recursion
Contributions [CADE’17]

(P2) Proof producing generic
contextual recursion algorithm

function process(∆, t)
match t

case x:
return build var(∆, x)

case f(t̄n):
∆̄′n ← (ctx app(∆, f, t̄n, i))

n
i=1

return build app
(
∆, ∆̄′n, f, t̄n, (process(∆′i, ti))

n
i=1

)
case Qx. ϕ:

∆′ ← ctx quant(∆, Q, x, ϕ)
return build quant(∆, ∆′, Q, x, ϕ, process(∆′, ϕ))

case let x̄n ' r̄n in t′:
∆′ ← ctx let(∆, x̄n, r̄n, t

′)
return build let(∆, ∆′, x̄n, r̄n, t

′, process(∆′, t′))

B Parameterized by a notion of context and plugin functions

PhD defense 29 / 33

Theoretical properties
Contributions [CADE’17]

(P3) Proving desirable properties of
rules and algorithms

B Soundness of inference rules proven through an encoding into simply
typed λ-calculus

M ::= t | λx. M | (λx̄n. M) t̄n

D1 · · · Dn
R

M ' N

B Correctness of proof-producing contextual recursion algorithm

B Cost of proof production is linear and of proof checking is (almost)
linear∗
∗ assuming suitable data structures

PhD defense 30 / 33

Theoretical properties
Contributions [CADE’17]

(P3) Proving desirable properties of
rules and algorithms

B Soundness of inference rules proven through an encoding into simply
typed λ-calculus

M ::= t | λx. M | (λx̄n. M) t̄n

D1 · · · Dn
R

M ' N

B Correctness of proof-producing contextual recursion algorithm

B Cost of proof production is linear and of proof checking is (almost)
linear∗
∗ assuming suitable data structures

PhD defense 30 / 33

Implementation
Contributions [CADE’17]

(P4) Validation of framework through implementation
and prototype checker

Proof output for veriT

Framework implemented with a proof-producing contextual recursion
algorithm

⊕ fine-grained proofs for most processing transformations

⊕ No negative impact on performance

⊕ More transformations in proof producing mode

⊕ Dramatic simplification of the code base

Prototype checker in Isabelle/HOL

Maps proofs into Isabelle theorems

⊕ Judgements encoded in λ-calculus

PhD defense 31 / 33

Summary Contributions [CADE’17]

Scalable fine-grained proofs for formula processing

B Centralizes manipulation of bound variables and substitutions

B Accommodates many transformations (e.g. Skolemization)

B Proof checking is (almost) linear

B Implementation and integration within veriT

Future work

B Support global rewritings within the framework

B Support richer logics (e.g. HOL)

B Implement proof reconstruction in Isabelle/HOL

PhD defense 32 / 33

Summary Contributions [CADE’17]

Scalable fine-grained proofs for formula processing

B Centralizes manipulation of bound variables and substitutions

B Accommodates many transformations (e.g. Skolemization)

B Proof checking is (almost) linear

B Implementation and integration within veriT

Future work

B Support global rewritings within the framework

B Support richer logics (e.g. HOL)

B Implement proof reconstruction in Isabelle/HOL

PhD defense 32 / 33

Conclusion

B Extensible framework for handling instantiation in SMT solving

B Extensible framework for proving formula processing in SMT solving

B Successful implementations

B Publications at TACAS’17 and CADE’17, pending submission to JAR

PhD defense 33 / 33

References

Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and
Pascal Fontaine. “veriT: An Open, Trustable and Efficient SMT-Solver”. In:
Proc. Conference on Automated Deduction (CADE). Ed. by Renate A. Schmidt.
Vol. 5663. Lecture Notes in Computer Science. Springer, 2009, pp. 151–156.

David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover for
Program Checking”. In: J. ACM 52.3 (2005), pp. 365–473.

Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified
Formulas in Satisfiabiliby Modulo Theories”. In:
Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and Oded Maler.
Vol. 5643. Lecture Notes in Computer Science. Springer, 2009, pp. 306–320.

Liana Hadarean, Clark W. Barrett, Andrew Reynolds, Cesare Tinelli, and
Morgan Deters. “Fine Grained SMT Proofs for the Theory of Fixed-Width
Bit-Vectors”. In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by
Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov.
Vol. 9450. Lecture Notes in Computer Science. Springer, 2015, pp. 340–355.

References

Guy Katz, Clark W. Barrett, Cesare Tinelli, Andrew Reynolds, and
Liana Hadarean. “Lazy proofs for DPLL(T)-based SMT solvers”. In:
Formal Methods In Computer-Aided Design (FMCAD). Ed. by Ruzica Piskac and
Muralidhar Talupur. IEEE, 2016, pp. 93–100.

Laura Kovács and Andrei Voronkov. “First-Order Theorem Proving and Vampire”.
English. In: Computer Aided Verification (CAV). Ed. by Natasha Sharygina and

Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 1–35.

Leonardo de Moura and Nikolaj Bjørner. “Efficient E-Matching for SMT Solvers”.
In: Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning.

Vol. 4603. Lecture Notes in Computer Science. Springer, 2007, pp. 183–198.

Leonardo Mendonça de Moura and Nikolaj Bjørner. “Proofs and Refutations, and
Z3”. In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) Workshops.
Ed. by Piotr Rudnicki, Geoff Sutcliffe, Boris Konev, Renate A. Schmidt, and
Stephan Schulz. Vol. 418. CEUR Workshop Proceedings. CEUR-WS.org, 2008.

References

Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krsti, Morgan Deters, and
Clark Barrett. “Quantifier Instantiation Techniques for Finite Model Finding in
SMT”. In: Proc. Conference on Automated Deduction (CADE). Ed. by
Maria Paola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer,
2013, pp. 377–391.

Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. “Finding
conflicting instances of quantified formulas in SMT”. In:
Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014, pp. 195–202.

Stephan Schulz. “System Description: E 1.8”. English. In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by
Ken McMillan, Aart Middeldorp, and Andrei Voronkov. Vol. 8312. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2013, pp. 735–743.

Geoff Sutcliffe, Jürgen Zimmer, and Stephan Schulz. “TSTP Data-Exchange
Formats for Automated Theorem Proving Tools”. In:
Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems.
Ed. by Weixiong Zhang and Volker Sorge. Vol. 112. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2004, pp. 201–215.

References

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. “SPASS Version 3.5”. English. In:
Proc. Conference on Automated Deduction (CADE). Ed. by RenateA. Schmidt.
Vol. 5663. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009,
pp. 140–145.

