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Problem statement

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

SAT (model) UNSAT (proof/core)

Quantifier-free solver enumerates models E

I E is a set of ground literals {a ≤ b, b ≤ a+ x, x ' 0, f(a) 6' f(b)}
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Contributions

A unifying framework for instantiating quantified formulas with equality
and uninterpreted functions [B., Fontaine, Reynolds. TACAS’17]

(I1) Formalizing underlying problem for instantiation in SMT

(I2) Lifting congruence closure to accommodate free variables

(I3) Casting existing instantiation techniques in framework

(I4) Techniques for efficient implementation
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Contributions

Scalable fine-grained proofs for formula processing
[B., Blanchette, Fontaine. CADE’17]

(P1) Extensible inference system for formula processing

(P2) Proof producing generic contextual recursion algorithm

(P3) Proving desirable properties of rules and algorithms

(P4) Validation of framework through implementation and prototype checker
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Contribution 1: A unifying framework for instantiating quantified
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Pattern-matching of terms from Q into terms of E
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� Fast, but too many instances
E with 102 applications each for f, g, h leads to up to 106 instantiations

EEE Instantiation moduleEasily gets out of hand!
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Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

If {f(a) ' f(c), g(b) 6' h(c)} ⊆ E, then E is refuted with the instantiation

∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)→ f(a) 6' f(c) ∨ g(b) ' h(c)

E Goal-oriented instantiation module

∀x̄. ψ → ψσ

E ∧ ψσ |= ⊥
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Previous work

Conflict-based instantiation [RTM14]

B Given a model E ∪Q, for some ∀x̄. ψ ∈ Q find σ s.t. E ∧ ψσ |= ⊥
B Add instance ∀x̄. ψ → ψσ to quantifier-free solver

Finding conflicting instances requires deriving σ s.t.

E |= ¬ψσ

⊕ Goal-oriented

⊕ Efficient

� Ad-hoc

� Incomplete
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Let’s look deeper into the problem
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' c or x ' c ∧ z ' a

I g(y) 6' h(z): y ' b ∧ z ' c

σ = {x 7→ c, y 7→ b, z 7→ c}

or
σ = {x 7→ a, y 7→ b, z 7→ c}
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E-ground (dis)unification
Contributions [TACAS’17]

(I1) Formalizing underlying problem
for instantiation in SMT

Given conjunctive sets of equality literals E and L, with E ground, finding
a substitution σ s.t. E |= Lσ

B Solution space can be restricted into ground terms from E ∪ L

B NP-complete

NP: solutions can checked in polynomial time
NP-hard: reduction of 3-SAT into the entailment

B Variant of classic (non-simultaneous) rigid E-unification

s1σ ' t1σ, . . . , snσ ' tnσ |= uσ ' vσ

PhD defense 10 / 33
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Congruence Closure with Free Variables
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and
terminating calculus for solving E-ground (dis)unification

⊕ Goal-oriented

⊕ Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula
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Existing techniques as special cases
Contributions [TACAS’17]

(I3) Casting existing instantiation
techniques in framework

B Conflict-based instantiation [RTM14]

⊕ CCFV provides formal guarantees and more clear extensions

B E-matching based heuristic instantiation [DNS05; MB07]

⊕ CCFV allows to easily discard instances already entailed by E

B Model-based instantiation [GM09; RTG+13]

⊕ No need for a secondary ground SMT solver
⊕ No need to guess solutions
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Finding solutions σ for E |= Lσ
Contributions [TACAS’17]

(I2) Lifting congruence closure to
accommodate free variables

E |= Lσ
f(a) ' f(c) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ g(y) 6' h(z))σ

f(x) ' f(z) ∧ g(y) 6' h(z)

f(x) ' f(z) ∧ z ' c ∧ y ' b

f(x) ' f(z) ∧ z ' c

f(x) ' f(c)

x ' a

>
x ' a, y ' b, z ' c

x ' c

>
x ' c, y ' b, z ' c

y ' b, z ' c

y ' b

∅
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Implementation Contributions [TACAS’17]

(I4) Techniques for efficient implementation

B Model minimisation

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

E |= f(x)σ ' t only if [t] contains some f(t′)

f →


f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t

′
n])

I Bitsets for fast checking if a symbol has applications in a
congruence class
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Implementation Contributions [TACAS’17]

(I4) Techniques for efficient implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ . . .

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized

E |= f(t, y) ' h(z) ∧ . . .

I E |= f(t, y)σ ' h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ' t′
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Implementation Contributions [TACAS’17]

(I4) Techniques for efficient implementation

A breadth-first implementation of CCFV:

B Explores sets of solutions at a time

E |= `1 ∧ . . . ∧ `n
↓ ↓
S1 u . . . u Sn individual solutions for each literal︸ ︷︷ ︸

S combination of compatible solutions

⊕ Heavy use of memoization

� Bottleneck in merging solution sets

PhD defense 16 / 33
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veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems
* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 30s timeout.
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The depth-first CCFV outperforms its breadth-first counterpart by a
small margin.

Both perform well and are viable approaches

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 100s timeout.
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Summary
Contributions [TACAS’17]

A unifying framework for quantified formulas
with equality and uninterpreted functions

B Formalizing underlying problem for instantiation in SMT

B Lifting congruence closure to accommodate free variables

B Casting existing instantiation techniques in framework

B Efficient implementations in the SMT solvers veriT and CVC4

Extensions

B Incrementality

B Learning-based search for solutions

B Finding conflicting instances across multiple quantified formulas

E |= ¬ψ1σ ∨ · · · ∨ ¬ψnσ, ∀x̄. ψ ∈ Q

B Beyond theory of equality

B Handle variables in E
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Contribution 2: Scalable fine-grained proofs for formula processing

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Formula processing

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

SAT (model) UNSAT (proof/core)

Proofs



Why proofs?

B to check the result for unsatisfiable/valid formulas

B for solver/prover cooperation

B as a debugging facility

B for evaluation purposes (how good is the algorithm?)

B as a part of the reasoning framework (e.g. conflict clauses)

B to extract cores

B to compute interpolants
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Challenges for proofs in FOL

B Collecting and storing proof information efficiently

no convergence, but quite active

[KBT+16; HBR+15; MB08; BODF09; SZS04; Sch13; KV13; WDF+09]

B Producing proofs for sophisticated processing techniques

scalable fine-grained proofs

B Producing proofs for modules that use external tools

depends on tool

B Standardizing a proof format

open
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Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]
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Proving formula processing

� Resolution does not capture all transformations

� Some transformations do not preserve logical equivalence

� Code is lengthy and deals with many cases

� Difficult to manipulate binders soundly and efficiently

Extensible framework to produce proofs for processing techniques involving
locally replacing equals by equals in the presence of binders

Some instances:

Skolemization: (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

let elimination: (let x ' a in p(x, x)) ' p(a, a)

theory simplifications: (k + 1×0 < k) ' (k < k)
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Inference system
Contributions [CADE’17]

(P1) Extensible inference system
for formula processing

A context Γ fixes a set of variables and specifies a substitution

substitution

bound variable

Rules have the form

transformation assumptions

derivations of premises

B Semantically, the judgement expresses the equality of the terms Γ(t)
and u for all variables fixed by Γ
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Example of ‘let’ expansion
Contributions [CADE’17]

(P1) Extensible inference system
for formula processing

Cong
B a ' a

Refl
x 7→ a B x ' a

Refl
x 7→ a B x ' a

Cong
x 7→ a B p(x, x) ' p(a, a)

Let
B (let x ' a in p(x, x)) ' p(a, a)
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Example of theory simplification
Contributions [CADE’17]

(P1) Extensible inference system
for formula processing

Cong
B k ' k

Taut×
B 1×0 ' 0

Cong
B k + 1×0 ' k + 0

Taut+
B k + 0 ' k

Trans
B k + 1×0 ' k

Cong
B k ' k

Cong
B (k + 1×0 < k) ' (k < k)
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Example of skolemization
Contributions [CADE’17]

(P1) Extensible inference system
for formula processing

The skolemization proof of the formula ¬∀x. p(x):

Refl
x 7→ εx. ¬ p(x) B x ' εx. ¬ p(x)

Cong
x 7→ εx. ¬ p(x) B p(x) ' p(εx. ¬ p(x))

Sko ∀
B (∀x. p(x)) ' p(εx. ¬ p(x))

Cong
B (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

veriT syntax:

(.c0 (Sko All :conclusion ((∀x. p(x)) ' p(εx. ¬ p(x)))
:args (x 7→ (εx. ¬ p(x)))
:subproof ((.c1 (Refl :conclusion (x ' (εx. ¬ p(x)))))

(.c2 (Cong :clauses (.c1)
:conclusion (p(x) ' p(εx. ¬ p(x))))))))

(.c3 (Cong :clauses (.c0) :conclusion ((¬∀x. p(x)) ' ¬ p(εx. ¬ p(x)))))

PhD defense 28 / 33



Proof-producing contextual recursion
Contributions [CADE’17]

(P2) Proof producing generic
contextual recursion algorithm

function process(∆, t)
match t

case x:
return build var(∆, x)

case f(t̄n):
∆̄′n ← (ctx app(∆, f, t̄n, i))

n
i=1

return build app
(
∆, ∆̄′n, f, t̄n, (process(∆′i, ti))

n
i=1

)
case Qx. ϕ:

∆′ ← ctx quant(∆, Q, x, ϕ)
return build quant(∆, ∆′, Q, x, ϕ, process(∆′, ϕ))

case let x̄n ' r̄n in t′:
∆′ ← ctx let(∆, x̄n, r̄n, t

′)
return build let(∆, ∆′, x̄n, r̄n, t

′, process(∆′, t′))

B Parameterized by a notion of context and plugin functions
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Theoretical properties
Contributions [CADE’17]

(P3) Proving desirable properties of
rules and algorithms

B Soundness of inference rules proven through an encoding into simply
typed λ-calculus

M ::= t | λx. M | (λx̄n. M) t̄n

D1 · · · Dn
R

M ' N

B Correctness of proof-producing contextual recursion algorithm

B Cost of proof production is linear and of proof checking is (almost)
linear∗
∗ assuming suitable data structures
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Implementation
Contributions [CADE’17]

(P4) Validation of framework through implementation
and prototype checker

Proof output for veriT

Framework implemented with a proof-producing contextual recursion
algorithm

⊕ fine-grained proofs for most processing transformations

⊕ No negative impact on performance

⊕ More transformations in proof producing mode

⊕ Dramatic simplification of the code base

Prototype checker in Isabelle/HOL

Maps proofs into Isabelle theorems

⊕ Judgements encoded in λ-calculus
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Summary Contributions [CADE’17]

Scalable fine-grained proofs for formula processing

B Centralizes manipulation of bound variables and substitutions

B Accommodates many transformations (e.g. Skolemization)

B Proof checking is (almost) linear

B Implementation and integration within veriT

Future work

B Support global rewritings within the framework

B Support richer logics (e.g. HOL)

B Implement proof reconstruction in Isabelle/HOL

PhD defense 32 / 33



Summary Contributions [CADE’17]

Scalable fine-grained proofs for formula processing

B Centralizes manipulation of bound variables and substitutions

B Accommodates many transformations (e.g. Skolemization)

B Proof checking is (almost) linear

B Implementation and integration within veriT

Future work

B Support global rewritings within the framework

B Support richer logics (e.g. HOL)

B Implement proof reconstruction in Isabelle/HOL

PhD defense 32 / 33



Conclusion

B Extensible framework for handling instantiation in SMT solving

B Extensible framework for proving formula processing in SMT solving

B Successful implementations

B Publications at TACAS’17 and CADE’17, pending submission to JAR
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References

Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and
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