New techniques for instantiation and proof production in SMT solving

Haniel Barbosa

University of Lorraine, CNRS, Inria, LORIA, Nancy, France PPgSC, DIMAp, UFRN, Natal, Brazil

Advisors: Pascal Fontaine, David Déharbe, and Stephan Merz

> PhD defense
> 2017-09-05, Nancy, France

Problem statement

$$
\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee(q(a) \wedge \neg q(b+x))]
$$

Problem statement

$\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \nsim f(b) \vee(q(a) \wedge \neg q(b+x))]$
Clausified formula:
$\varphi^{\prime}=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \nsucceq f(b) \vee q(a)] \wedge[f(a) \not 千 f(b) \vee \neg q(b+x)]$

Problem statement

$\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee(q(a) \wedge \neg q(b+x))]$
Clausified formula：
$\varphi^{\prime}=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee q(a)] \wedge[f(a) \not 千 f(b) \vee \neg q(b+x)]$
Propositional abstraction：

$$
\operatorname{abs}\left(\varphi^{\prime}\right)=p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x \simeq 0} \wedge\left(\neg p_{f(a) \simeq f(b)} \vee p_{q(a)}\right) \wedge\left(\neg p_{f(a) \simeq f(b)} \vee \neg p_{q(b+x)}\right)
$$

Problem statement

$$
\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee(q(a) \wedge \neg q(b+x))]
$$

Clausified formula：
$\varphi^{\prime}=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee q(a)] \wedge[f(a) \not 千 f(b) \vee \neg q(b+x)]$

Propositional abstraction：
$a b s\left(\varphi^{\prime}\right)=p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x \simeq 0} \wedge\left(\neg p_{f(a) \simeq f(b)} \vee p_{q(a)}\right) \wedge\left(\neg p_{f(a) \simeq f(b)} \vee \neg p_{q(b+x)}\right)$
Satisfying assignment：
$\left\{p_{a \leq b}, p_{b \leq a+x}, p_{x \simeq 0}, \neg p_{f(a) \simeq f(b)}\right\} \Rightarrow\{a \leq b, b \leq a+x, x \simeq 0, f(a) \not 千 f(b)\}$

Problem statement

$$
\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee(q(a) \wedge \neg q(b+x))]
$$

Clausified formula：
$\varphi^{\prime}=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee q(a)] \wedge[f(a) \not 千 f(b) \vee \neg q(b+x)]$
Propositional abstraction：
$a b s\left(\varphi^{\prime}\right)=p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x \simeq 0} \wedge\left(\neg p_{f(a) \simeq f(b)} \vee p_{q(a)}\right) \wedge\left(\neg p_{f(a) \simeq f(b)} \vee \neg p_{q(b+x)}\right)$
Satisfying assignment：

$$
\left\{p_{a \leq b}, p_{b \leq a+x}, p_{x \simeq 0}, \neg p_{f(a) \simeq f(b)}\right\} \Rightarrow\{a \leq b, b \leq a+x, x \simeq 0, f(a) \nsim f(b)\}
$$

Conflict clause：$\neg(a \leq b) \vee \neg(b \leq a+x) \vee \neg(x \simeq 0) \vee f(a) \simeq f(b)$

Problem statement

$$
\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee(q(a) \wedge \neg q(b+x))]
$$

Clausified formula:

$$
\begin{aligned}
& \varphi^{\prime}=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \nsucceq f(b) \vee q(a)] \wedge[f(a) \nsucceq f(b) \vee \neg q(b+x)] \\
& \varphi^{\prime \prime}=\varphi^{\prime} \wedge \neg(a \leq b) \vee \neg(b \leq a+x) \vee \neg(x \simeq 0) \vee f(a) \simeq f(b)
\end{aligned}
$$

Problem statement

$\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee(q(a) \wedge \neg q(b+x))]$
Clausified formula：
$\varphi^{\prime}=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee q(a)] \wedge[f(a) \not 千 f(b) \vee \neg q(b+x)]$
$\varphi^{\prime \prime}=\varphi^{\prime} \wedge \neg(a \leq b) \vee \neg(b \leq a+x) \vee \neg(x \simeq 0) \vee f(a) \simeq f(b)$
Satisfying assignment：$\{a \leq b, b \leq a+x, x \simeq 0, q(a), \neg q(b+x)\}$

Problem statement

$\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee(q(a) \wedge \neg q(b+x))]$
Clausified formula：
$\varphi^{\prime}=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee q(a)] \wedge[f(a) \not 千 f(b) \vee \neg q(b+x)]$
$\varphi^{\prime \prime}=\varphi^{\prime} \wedge \neg(a \leq b) \vee \neg(b \leq a+x) \vee \neg(x \simeq 0) \vee f(a) \simeq f(b)$
Satisfying assignment：$\{a \leq b, b \leq a+x, x \simeq 0, q(a), \neg q(b+x)\}$

Conflict clause：$\neg(a \leq b) \vee \neg(b \leq a+x) \vee \neg(x \simeq 0) \vee \neg q(a) \vee q(b+x)$

Problem statement

$$
\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee(q(a) \wedge \neg q(b+x))]
$$

Clausified formula：

$$
\begin{aligned}
& \varphi^{\prime}=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee q(a)] \wedge[f(a) \not 千 f(b) \vee \neg q(b+x)] \\
& \varphi^{\prime \prime}=\varphi^{\prime} \wedge \neg(a \leq b) \vee \neg(b \leq a+x) \vee \neg(x \simeq 0) \vee f(a) \simeq f(b) \\
& \varphi^{\prime \prime \prime}=\varphi^{\prime \prime} \wedge \neg(a \leq b) \vee \neg(b \leq a+x) \vee \neg(x \simeq 0) \vee \neg q(a) \vee q(b+x)
\end{aligned}
$$

Problem statement

$$
\varphi=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee(q(a) \wedge \neg q(b+x))]
$$

Clausified formula：

$$
\begin{aligned}
& \varphi^{\prime}=a \leq b \wedge b \leq a+x \wedge x \simeq 0 \wedge[f(a) \not 千 f(b) \vee q(a)] \wedge[f(a) \not 千 f(b) \vee \neg q(b+x)] \\
& \varphi^{\prime \prime}=\varphi^{\prime} \wedge \neg(a \leq b) \vee \neg(b \leq a+x) \vee \neg(x \simeq 0) \vee f(a) \simeq f(b) \\
& \varphi^{\prime \prime \prime}=\varphi^{\prime \prime} \wedge \neg(a \leq b) \vee \neg(b \leq a+x) \vee \neg(x \simeq 0) \vee \neg q(a) \vee q(b+x)
\end{aligned}
$$

Problem statement

Quantifier-free solver enumerates models E

- E is a set of ground literals

$$
\{a \leq b, b \leq a+x, x \simeq 0, f(a) \nsucceq f(b)\}
$$

Problem statement

Quantifier-free solver enumerates models $E \cup \mathcal{Q}$

- E is a set of ground literals

$$
\begin{array}{r}
\{a \leq b, b \leq a+x, x \simeq 0, f(a) \nsucceq f(b)\} \\
\quad\{\forall x y z \cdot f(x) \nsucceq f(z) \vee g(y) \simeq h(z)\}
\end{array}
$$

Instantiation module generates instances of \mathcal{Q}

$$
f(a) \nsucceq f(b) \vee g(a) \simeq h(b)
$$

Contributions

A unifying framework for instantiating quantified formulas with equality and uninterpreted functions [B., Fontaine, Reynolds. TACAS'17]
(I1) Formalizing underlying problem for instantiation in SMT
(I2) Lifting congruence closure to accommodate free variables
(I3) Casting existing instantiation techniques in framework
(14) Techniques for efficient implementation

Contributions

Scalable fine-grained proofs for formula processing
[B., Blanchette, Fontaine. CADE'17]
(P1) Extensible inference system for formula processing
(P2) Proof producing generic contextual recursion algorithm
(P3) Proving desirable properties of rules and algorithms
(P4) Validation of framework through implementation and prototype checker

Contribution 1: A unifying framework for instantiating quantified formulas with equality and uninterpreted functions

Heuristic instantiation

Pattern-matching of terms from \mathcal{Q} into terms of E
for $\forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z)$ a pattern is $\{f(x), g(y), h(z)\}$
Θ Fast, but too many instances
E with 10^{2} applications each for f, g, h leads to up to 10^{6} instantiations

Heuristic instantiation

Pattern-matching of terms from \mathcal{Q} into terms of E

$$
\text { for } \forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z) \text { a pattern is }\{f(x), g(y), h(z)\}
$$

Θ Fast, but too many instances
E with 10^{2} applications each for f, g, h leads to up to 10^{6} instantiations

E
Instantiation module

Heuristic instantiation

Pattern-matching of terms from \mathcal{Q} into terms of E for $\forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z)$ a pattern is $\{f(x), g(y), h(z)\}$
Θ Fast, but too many instances E with 10^{2} applications each for f, g, h leads to up to 10^{6} instantiations

Heuristic instantiation

Pattern-matching of terms from \mathcal{Q} into terms of E

$$
\text { for } \forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z) \text { a pattern is }\{f(x), g(y), h(z)\}
$$

Θ Fast, but too many instances
E with 10^{2} applications each for f, g, h leads to up to 10^{6} instantiations

Heuristic instantiation

Pattern-matching of terms from \mathcal{Q} into terms of E

$$
\text { for } \forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z) \text { a pattern is }\{f(x), g(y), h(z)\}
$$

Θ Fast, but too many instances
E with 10^{2} applications each for f, g, h leads to up to 10^{6} instantiations

Heuristic instantiation

Pattern-matching of terms from \mathcal{Q} into terms of E
for $\forall x y z . f(x) \nsim f(z) \vee g(y) \simeq h(z)$ a pattern is $\{f(x), g(y), h(z)\}$
Θ Fast, but too many instances
E with 10^{2} applications each for f, g, h leads to up to 10^{6} instantiations

Heuristic instantiation

Pattern-matching of terms from \mathcal{Q} into terms of E for $\forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z)$ a pattern is $\{f(x), g(y), h(z)\}$
Θ Fast, but too many instances
E with 10^{2} applications each for f, g, h leads to up to 10^{6} instantiations

Goal-oriented instantiation

Check consistency of $E \cup \mathcal{Q}$
\oplus Only instances refuting the current model are generated

Goal-oriented instantiation

Check consistency of $E \cup \mathcal{Q}$
\oplus Only instances refuting the current model are generated If $\{f(a) \simeq f(c), g(b) \nsucceq h(c)\} \subseteq E$, then E is refuted with the instantiation $\forall x y z . f(x) \not 千 f(z) \vee g(y) \simeq h(z) \rightarrow f(a) \not 千 f(c) \vee g(b) \simeq h(c)$

Goal-oriented instantiation

Check consistency of $E \cup \mathcal{Q}$
\oplus Only instances refuting the current model are generated If $\{f(a) \simeq f(c), g(b) \nsucceq h(c)\} \subseteq E$, then E is refuted with the instantiation $\forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z) \rightarrow f(a) \nsucceq f(c) \vee g(b) \simeq h(c)$

Goal-oriented instantiation

Check consistency of $E \cup \mathcal{Q}$
\oplus Only instances refuting the current model are generated If $\{f(a) \simeq f(c), g(b) \nsucceq h(c)\} \subseteq E$, then E is refuted with the instantiation $\forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z) \rightarrow f(a) \nsucceq f(c) \vee g(b) \simeq h(c)$

Goal-oriented instantiation

Check consistency of $E \cup \mathcal{Q}$
\oplus Only instances refuting the current model are generated If $\{f(a) \simeq f(c), g(b) \nsucceq h(c)\} \subseteq E$, then E is refuted with the instantiation $\forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z) \rightarrow f(a) \nsucceq f(c) \vee g(b) \simeq h(c)$

Goal-oriented instantiation

Check consistency of $E \cup \mathcal{Q}$
\oplus Only instances refuting the current model are generated If $\{f(a) \simeq f(c), g(b) \nsucceq h(c)\} \subseteq E$, then E is refuted with the instantiation $\forall x y z . f(x) \nsucceq f(z) \vee g(y) \simeq h(z) \rightarrow f(a) \nsucceq f(c) \vee g(b) \simeq h(c)$

Previous work

Conflict-based instantiation

\triangleright Given a model $E \cup \mathcal{Q}$, for some $\forall \bar{x} . \psi \in \mathcal{Q}$ find σ s.t. $E \wedge \psi \sigma \models \perp$
\triangleright Add instance $\forall \bar{x} . \psi \rightarrow \psi \sigma$ to quantifier-free solver
Finding conflicting instances requires deriving σ s.t.

$$
E \models \neg \psi \sigma
$$

\oplus Goal-oriented
\oplus Efficient
Θ Ad-hoc
Θ Incomplete

Let's look deeper into the problem

(I1) Formalizing underlying problem for instantiation in SMT

$$
E \models \neg \psi \sigma, \text { for some } \forall \bar{x} . \psi \in \mathcal{Q}
$$

Let's look deeper into the problem

(I1) Formalizing underlying problem for instantiation in SMT

$$
E \models \neg \psi \sigma, \text { for some } \forall \bar{x} . \psi \in \mathcal{Q}
$$

$$
E=\{f(a) \simeq f(c), g(b) \not 千 h(c)\}, \mathcal{Q}=\{\forall x y z \cdot f(x) \nsucceq f(z) \vee g(y) \simeq h(z)\}
$$

Let's look deeper into the problem

$$
E \models \neg \psi \sigma, \text { for some } \forall \bar{x} . \psi \in \mathcal{Q}
$$

$$
\begin{gathered}
E=\{f(a) \simeq f(c), g(b) \not 千 h(c)\}, \mathcal{Q}=\{\forall x y z . f(x) \not 千 f(z) \vee g(y) \simeq h(z)\} \\
f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma
\end{gathered}
$$

Let's look deeper into the problem

$$
E \models \neg \psi \sigma, \text { for some } \forall \bar{x} . \psi \in \mathcal{Q}
$$

$$
\begin{gathered}
E=\{f(a) \simeq f(c), g(b) \not 千 h(c)\}, \mathcal{Q}=\{\forall x y z . f(x) \not 千 f(z) \vee g(y) \simeq h(z)\} \\
f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma
\end{gathered}
$$

\triangleright Each literal in the right hand side delimits possible σ

Let＇s look deeper into the problem

$$
E \models \neg \psi \sigma, \text { for some } \forall \bar{x} . \psi \in \mathcal{Q}
$$

$$
\begin{gathered}
E=\{f(a) \simeq f(c), g(b) \not 千 h(c)\}, \mathcal{Q}=\{\forall x y z \cdot f(x) \not 千 f(z) \vee g(y) \simeq h(z)\} \\
f(a) \simeq f(c) \wedge g(b) \not 千 h(c) \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma
\end{gathered}
$$

\triangleright Each literal in the right hand side delimits possible σ
－$f(x) \simeq f(z)$ ：either $x \simeq z$ or $x \simeq a \wedge z \simeq c$ or $x \simeq c \wedge z \simeq a$

Let's look deeper into the problem

$$
E \models \neg \psi \sigma, \text { for some } \forall \bar{x} . \psi \in \mathcal{Q}
$$

$$
\begin{gathered}
E=\{f(a) \simeq f(c), g(b) \not 千 h(c)\}, \mathcal{Q}=\{\forall x y z . f(x) \not 千 f(z) \vee g(y) \simeq h(z)\} \\
f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma
\end{gathered}
$$

\triangleright Each literal in the right hand side delimits possible σ

- $f(x) \simeq f(z)$: either $x \simeq z$ or $x \simeq a \wedge z \simeq c$ or $x \simeq c \wedge z \simeq a$
- $g(y) \nsucceq h(z): y \simeq b \wedge z \simeq c$

Let＇s look deeper into the problem

$$
E \models \neg \psi \sigma, \text { for some } \forall \bar{x} . \psi \in \mathcal{Q}
$$

$$
\begin{gathered}
E=\{f(a) \simeq f(c), g(b) \not 千 h(c)\}, \mathcal{Q}=\{\forall x y z . f(x) \not 千 f(z) \vee g(y) \simeq h(z)\} \\
f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma
\end{gathered}
$$

\triangleright Each literal in the right hand side delimits possible σ
－$f(x) \simeq f(z)$ ：either $\underline{x \simeq z}$ or $x \simeq a \wedge z \simeq c$ or $x \simeq c \wedge z \simeq a$
－$g(y) \not 千 h(z): \underline{y \simeq b \wedge z \simeq c}$

$$
\sigma=\{x \mapsto c, y \mapsto b, z \mapsto c\}
$$

Let＇s look deeper into the problem

$$
E \models \neg \psi \sigma, \text { for some } \forall \bar{x} . \psi \in \mathcal{Q}
$$

$$
\begin{gathered}
E=\{f(a) \simeq f(c), g(b) \not 千 h(c)\}, \mathcal{Q}=\{\forall x y z . f(x) \not 千 f(z) \vee g(y) \simeq h(z)\} \\
f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma
\end{gathered}
$$

\triangleright Each literal in the right hand side delimits possible σ
－$f(x) \simeq f(z)$ ：either $x \simeq z$ or $\underline{x \simeq a \wedge z \simeq c}$ or $x \simeq c \wedge z \simeq a$
－$g(y) \not 千 h(z): \underline{y \simeq b \wedge z \simeq c}$

$$
\sigma=\{x \mapsto c, y \mapsto b, z \mapsto c\}
$$

or

$$
\sigma=\{x \mapsto a, y \mapsto b, z \mapsto c\}
$$

Let＇s look deeper into the problem

$$
E \models \neg \psi \sigma, \text { for some } \forall \bar{x} . \psi \in \mathcal{Q}
$$

$$
\begin{gathered}
E=\{f(a) \simeq f(c), g(b) \not 千 h(c)\}, \mathcal{Q}=\{\forall x y z . f(x) \not 千 f(z) \vee g(y) \simeq h(z)\} \\
f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma
\end{gathered}
$$

\triangleright Each literal in the right hand side delimits possible σ
－$f(x) \simeq f(z)$ ：either $x \simeq z$ or $x \simeq a \wedge z \simeq c$ or $x \simeq c \wedge z \simeq a$
－$g(y) \not 千 h(z): \underline{y \simeq b \wedge z \simeq c}$

$$
\sigma=\{x \mapsto c, y \mapsto b, z \mapsto c\}
$$

or

$$
\sigma=\{x \mapsto a, y \mapsto b, z \mapsto c\}
$$

E-ground (dis)unification

Contributions
(I1) Formalizing underlying problem for instantiation in SMT

Given conjunctive sets of equality literals E and L, with E ground, finding a substitution σ s.t. $E \models L \sigma$

E-ground (dis)unification

(I1) Formalizing underlying problem for instantiation in SMT

Given conjunctive sets of equality literals E and L, with E ground, finding a substitution σ s.t. $E \models L \sigma$
\triangleright Solution space can be restricted into ground terms from $E \cup L$

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, finding a substitution σ s.t. $E \models L \sigma$
\triangleright Solution space can be restricted into ground terms from $E \cup L$
\triangleright NP-complete
NP: solutions can checked in polynomial time NP-hard: reduction of 3-SAT into the entailment

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, finding a substitution σ s.t. $E \models L \sigma$
\triangleright Solution space can be restricted into ground terms from $E \cup L$
\triangleright NP-complete
NP: solutions can checked in polynomial time NP-hard: reduction of 3-SAT into the entailment
\triangleright Variant of classic (non-simultaneous) rigid E-unification

$$
s_{1} \sigma \simeq t_{1} \sigma, \ldots, s_{n} \sigma \simeq t_{n} \sigma \models u \sigma \simeq v \sigma
$$

Congruence Closure with Free Variables

(I2) Lifting congruence closure to accommodate free variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and terminating calculus for solving E-ground (dis)unification

Congruence Closure with Free Variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and terminating calculus for solving E-ground (dis)unification
\oplus Goal-oriented

Efficient

Congruence Closure with Free Variables

Congruence Closure with Free Variables (CCFV) is a sound, complete and terminating calculus for solving E-ground (dis)unification
\oplus Goal-oriented
\oplus Efficient
\ominus Versatile framework, recasting many instantiation techniques as a CCFV problem
Θ Finds all conflicting instances of a quantified formula

Existing techniques as special cases

\triangleright Conflict-based instantiation
[RTM14]
\oplus CCFV provides formal guarantees and more clear extensions
$\triangleright E$-matching based heuristic instantiation
[DNS05; MB07]
\oplus CCFV allows to easily discard instances already entailed by E
\triangleright Model-based instantiation
[GM09; RTG+13]
\oplus No need for a secondary ground SMT solver
\oplus No need to guess solutions

Finding solutions σ for $E \models L \sigma$

Contributions [TACAS'17]
(I2) Lifting congruence closure to accommodate free variables

$$
\begin{aligned}
E & \models L \sigma \\
f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) & \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma
\end{aligned}
$$

Finding solutions σ for $E \models L \sigma$

Contributions [TACAS'17]
(I2) Lifting congruence closure to accommodate free variables

$$
\begin{aligned}
E & \models L \sigma \\
f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) & \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma \\
f(x) \simeq f(z) & \wedge g(y) \nsucceq h(z)
\end{aligned}
$$

Finding solutions σ for $E \models L \sigma$

Contributions [TACAS'17]
(I2) Lifting congruence closure to accommodate free variables

$$
\begin{aligned}
& E \models L \sigma \\
& f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) \vDash(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma \\
& f(x) \simeq f(z) \wedge g(y) \nsucceq h(z) \\
& \varnothing= \\
& f(x) \simeq f(z) \wedge z \simeq c \wedge y \simeq b
\end{aligned}
$$

Finding solutions σ for $E \models L \sigma$

Contributions [TACAS'17]
(I2) Lifting congruence closure to accommodate free variables

$$
\begin{aligned}
& E \models L \sigma \\
& f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma \\
& f(x) \simeq f(z) \wedge g(y) \nsim h(z) \\
& \varnothing \\
& f(x) \simeq f(z) \wedge z \simeq c \wedge y \simeq b \\
& y \simeq b \mid \\
& f(x) \simeq f(z) \wedge z \simeq c
\end{aligned}
$$

Finding solutions σ for $E \models L \sigma$

Contributions [TACAS'17]
(I2) Lifting congruence closure to accommodate free variables

$$
\begin{aligned}
& E \vDash L \sigma \\
& f(a) \simeq f(c) \wedge g(b) \nsim h(c) \vDash(f(x) \simeq f(z) \wedge g(y) \nsim h(z)) \sigma \\
& f(x) \simeq f(z) \wedge g(y) \nsucceq h(z) \\
& \varnothing \\
& f(x) \simeq f(z) \wedge z \simeq c \wedge y \simeq b \\
& y \simeq b \mid \\
& f(x) \simeq f(z) \wedge z \simeq c \\
& y \simeq b, z \simeq c \mid \\
& f(x) \simeq f(c)
\end{aligned}
$$

Finding solutions σ for $E \models L \sigma$

Contributions [TACAS'17]
(I2) Lifting congruence closure to accommodate free variables

$$
\begin{array}{rl}
E & \neq L \sigma \\
f(a) \simeq f(c) \wedge g(b) \nsim h(c) & \vDash(f(x) \simeq f(z) \wedge g(y) \nsim h(z)) \sigma \\
f(x) \simeq f(z) & \wedge g(y) \nsim h(z) \\
\varnothing & \mid \\
f(x) \simeq f(z) \wedge z \simeq c \wedge y \simeq b \\
y \simeq b \mid \\
f(x) \simeq f(z) \wedge z \simeq c \\
y \simeq b, z \simeq c \mid \\
f(x) \simeq f(c) \\
x \simeq a & x \simeq c
\end{array}
$$

Finding solutions σ for $E \models L \sigma$

Contributions [TACAS'17]
(I2) Lifting congruence closure to accommodate free variables

$$
\begin{aligned}
& \begin{aligned}
E & \models L \sigma \\
f(a) \simeq f(c) \wedge g(b) \nsucceq h(c) & \models(f(x) \simeq f(z) \wedge g(y) \nsucceq h(z)) \sigma
\end{aligned} \\
& f(x) \simeq f(z) \wedge g(y) \nsucceq h(z) \\
& \varnothing \mid \\
& f(x) \simeq f(z) \wedge z \simeq c \wedge y \simeq b \\
& y \simeq b \mid \\
& f(x) \simeq f(z) \wedge z \simeq c \\
& y \simeq b, z \simeq c \mid
\end{aligned}
$$

Implementation

(14) Techniques for efficient implementation

\triangleright Model minimisation

Implementation

(14) Techniques for efficient implementation
\triangleright Model minimisation

\triangleright Top symbol indexing of E-graph from ground congruence closure

$$
\begin{aligned}
& E \models f(x) \sigma \simeq t \text { only if }[t] \text { contains some } f\left(t^{\prime}\right) \\
& f \\
& \qquad\left\{\begin{array}{c}
f\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right) \\
\ldots \\
f\left(\left[t_{1}^{\prime}\right], \ldots,\left[t_{n}^{\prime}\right]\right)
\end{array}\right.
\end{aligned}
$$

- Bitsets for fast checking if a symbol has applications in a congruence class

Implementation

(14) Techniques for efficient implementation
\triangleright Selection strategies

$$
E \models f(x, y) \simeq h(z) \wedge x \simeq t \wedge \ldots
$$

Implementation

\triangleright Selection strategies

$$
E \models f(x, y) \simeq h(z) \wedge x \simeq t \wedge \ldots
$$

\triangleright Eagerly checking whether constraints can be discarded

- After assigning x to t, the remaining problem is normalized

$$
E \models f(t, y) \simeq h(z) \wedge \ldots
$$

- $E \models f(t, y) \sigma \simeq h(z) \sigma$ only if there is some $f\left(t^{\prime}, t^{\prime \prime}\right)$ s.t.

$$
E \models t \simeq t^{\prime}
$$

Implementation

A breadth-first implementation of CCFV:
\triangleright Explores sets of solutions at a time

combination of compatible solutions
\oplus Heavy use of memoization
Θ Bottleneck in merging solution sets

veriT: +800 out of 1785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems

* experiments in the "UF", "UFLIA", "UFLRA" and "UFIDL" categories of SMT-LIB, which have 10495 benchmarks
annotated as unsatisfiable, with 30 s timeout.

The depth-first CCFV outperforms its breadth-first counterpart by a small margin.

Both perform well and are viable approaches

* experiments in the "UF", "UFLIA", "UFLRA" and "UFIDL" categories of SMT-LIB, which have 10495 benchmarks annotated as unsatisfiable, with 100s timeout.

Summary

\triangleright Formalizing underlying problem for instantiation in SMT
\triangleright Lifting congruence closure to accommodate free variables
\triangleright Casting existing instantiation techniques in framework
\triangleright Efficient implementations in the SMT solvers veriT and CVC4

Summary

\triangleright Formalizing underlying problem for instantiation in SMT
\triangleright Lifting congruence closure to accommodate free variables
\triangleright Casting existing instantiation techniques in framework
\triangleright Efficient implementations in the SMT solvers veriT and CVC4

Extensions

\triangleright Incrementality
\triangleright Learning-based search for solutions
\triangleright Finding conflicting instances across multiple quantified formulas

$$
E \models \neg \psi_{1} \sigma \vee \cdots \vee \neg \psi_{n} \sigma, \quad \forall \bar{x} . \psi \in \mathcal{Q}
$$

\triangleright Beyond theory of equality
\triangleright Handle variables in E

Contribution 2: Scalable fine-grained proofs for formula processing

Why proofs?

- to check the result for unsatisfiable/valid formulas
\triangleright for solver/prover cooperation
\triangleright as a debugging facility
\triangleright for evaluation purposes (how good is the algorithm?)
\triangleright as a part of the reasoning framework (e.g. conflict clauses)
\triangleright to extract cores
\triangleright to compute interpolants

Challenges for proofs in FOL

\triangleright Collecting and storing proof information efficiently
\triangleright Producing proofs for sophisticated processing techniques
\triangleright Producing proofs for modules that use external tools
\triangleright Standardizing a proof format

Challenges for proofs in FOL

\triangleright Collecting and storing proof information efficiently no convergence, but quite active [KBT+16; HBR+15; MB08; BODF09; SZS04; Sch13; KV13; WDF+09]
\triangleright Producing proofs for sophisticated processing techniques proofs with holes or too coarse
\triangleright Producing proofs for modules that use external tools depends on tool
\triangleright Standardizing a proof format open

Challenges for proofs in FOL

\triangleright Collecting and storing proof information efficiently no convergence, but quite active [KBT+16; HBR+15; MB08; BODF09; SZS04; Sch13; KV13; WDF+09]
\triangleright Producing proofs for sophisticated processing techniques scalable fine-grained proofs
\triangleright Producing proofs for modules that use external tools depends on tool
\triangleright Standardizing a proof format open

Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier reasoning

Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier reasoning
\triangleright SAT solver: resolution

$$
\frac{A \vee \ell \quad B \vee \bar{\ell}}{A \vee B}
$$

Antecedents: $A \vee \ell, B \vee \bar{\ell}$
Pivot: ℓ or $\bar{\ell}$
Resolvent: $A \vee B=(A \vee \ell) \diamond(B \vee \bar{\ell})$

Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier reasoning
\triangleright SAT solver: resolution

$$
\frac{A \vee \ell \quad B \vee \bar{\ell}}{A \vee B}
$$

Antecedents: $A \vee \ell, B \vee \bar{\ell}$
Pivot: ℓ or $\bar{\ell}$
Resolvent: $A \vee B=(A \vee \ell) \diamond(B \vee \bar{\ell})$
\triangleright theory solvers: theory lemmas

$$
\begin{gathered}
\neg(a \simeq c) \vee \neg(c \simeq b) \vee a \simeq b \quad \neg(a \simeq b) \vee f(a) \simeq f(b) \\
\neg(y>1) \vee \neg(x<1) \vee y>x
\end{gathered}
$$

Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier reasoning
\triangleright SAT solver: resolution

$$
\frac{A \vee \ell \quad B \vee \bar{\ell}}{A \vee B}
$$

Antecedents: $A \vee \ell, B \vee \bar{\ell}$
Pivot: ℓ or $\bar{\ell}$
Resolvent: $A \vee B=(A \vee \ell) \diamond(B \vee \bar{\ell})$
\triangleright theory solvers: theory lemmas

$$
\begin{gathered}
\neg(a \simeq c) \vee \neg(c \simeq b) \vee a \simeq b \quad \neg(a \simeq b) \vee f(a) \simeq f(b) \\
\neg(y>1) \vee \neg(x<1) \vee y>x
\end{gathered}
$$

\triangleright instantiation module: instantiation lemmas

$$
\neg(\forall x . \psi[x]) \vee \psi[t]
$$

Proving formula processing

Θ Resolution does not capture all transformations
Θ Some transformations do not preserve logical equivalence
Θ Code is lengthy and deals with many cases
Θ Difficult to manipulate binders soundly and efficiently

Proving formula processing

Θ Resolution does not capture all transformations
Θ Some transformations do not preserve logieal equivalence
Θ Code is lengthy and deals with many cases
Θ Difficult to manipulate binders soundly and efficiently
Extensible framework to produce proofs for processing techniques involving locally replacing equals by equals in the presence of binders

Some instances:
Skolemization: $(\neg \forall x . \mathrm{p}(x)) \simeq \neg \mathrm{p}(\varepsilon x . \neg \mathrm{p}(x))$
let elimination: $($ let $x \simeq a$ in $\mathrm{p}(x, x)) \simeq \mathrm{p}(\mathrm{a}, \mathrm{a})$
theory simplifications: $(k+1 \times 0<k) \simeq(k<k)$

Inference system

A context Γ fixes a set of variables and specifies a substitution

$$
\begin{aligned}
& \qquad \Gamma::=\varnothing|\Gamma, x| \Gamma, \bar{x}_{n} \mapsto \bar{s}_{n} \\
& \text { bound variable }
\end{aligned}
$$

Inference system

A context Γ fixes a set of variables and specifies a substitution

$$
\begin{aligned}
& \quad \Gamma::=\varnothing|\Gamma, x| \Gamma, \bar{x}_{n} \mapsto \bar{s}_{n} \\
& \text { bound variable }
\end{aligned}
$$

Rules have the form

\triangleright Semantically, the judgement expresses the equality of the terms $\Gamma(t)$ and u for all variables fixed by Γ

Example of 'let' expansion

Contributions
[CADE'17]
(P1) Extensible inference system for formula processing

Example of theory simplification

Contributions [CADE'17]
(P1) Extensible inference system for formula processing

$$
\begin{aligned}
& \frac{\overline{\mathrm{k}}^{\triangleright \mathrm{k}} \operatorname{Cong}_{\triangleright \mathrm{k}+1 \times 0 \simeq \mathrm{k}+0}^{\triangleright 1 \times 0 \simeq 0} \text { TaUT }_{\times}}{\text {Cong }^{2}} \\
& \nabla \mathrm{k}+0 \simeq \mathrm{k} \mathrm{TAUT}_{+} \\
& \triangleright k+1 \times 0 \simeq k \quad \text { Trans } \quad \triangleright k \simeq k \\
& \triangleright(\mathrm{k}+1 \times 0<\mathrm{k}) \simeq(\mathrm{k}<\mathrm{k})
\end{aligned}
$$

Example of skolemization

The skolemization proof of the formula $\neg \forall x . \mathrm{p}(x)$:

$$
\begin{aligned}
& \begin{array}{c}
\overline{x \mapsto \varepsilon x . \neg \mathrm{p}(x) \triangleright x \simeq \varepsilon x . \neg \mathrm{p}(x)} \text { REFL } \\
x \mapsto \varepsilon x . \neg \mathrm{p}(x) \triangleright \mathrm{p}(x) \simeq \mathrm{p}(\varepsilon x . \neg \mathrm{p}(x)) \\
\text { CONG }
\end{array} \\
& \triangleright(\forall x . \mathrm{p}(x)) \simeq \mathrm{p}(\varepsilon x . \neg \mathrm{p}(x)) \\
& \triangleright(\neg \forall x . \mathrm{p}(x)) \simeq \neg \mathrm{p}(\varepsilon x . \neg \mathrm{p}(x))
\end{aligned}
$$

veriT syntax:
(.c0 (Sko_All :conclusion $((\forall x . \mathrm{p}(x)) \simeq \mathrm{p}(\varepsilon x . \neg \mathrm{p}(x)))$

$$
\begin{gathered}
: \operatorname{args}(x \mapsto(\varepsilon x . \neg \mathrm{p}(x))) \\
: \operatorname{subproof}((. \operatorname{cc}(\text { Refl }: \text { conclusion }(x \simeq(\varepsilon x . \neg \mathrm{p}(x))))) \\
\quad(. c 2(\text { Cong :clauses }(. c 1)
\end{gathered}
$$:conclusion $(\mathrm{p}(x) \simeq \mathrm{p}(\varepsilon x . \neg \mathrm{p}(x))))))))$

(.c3 (Cong :clauses $(. c 0)$:conclusion $((\neg \forall x . \mathrm{p}(x)) \simeq \neg \mathrm{p}(\varepsilon x . \neg \mathrm{p}(x)))))$

Proof-producing contextual recursion

```
function \(\operatorname{process}(\Delta, t)\)
    match \(t\)
        case \(x\) :
            return build_var( \(\Delta, x\) )
        case \(\mathrm{f}\left(\bar{t}_{n}\right)\) :
            \(\bar{\Delta}_{n}^{\prime} \leftarrow\left(\operatorname{ctx}-a p p\left(\Delta, \mathrm{f}, \bar{t}_{n}, i\right)\right)_{i=1}^{n}\)
            return build_app \(\left(\Delta, \bar{\Delta}_{n}^{\prime}, \mathrm{f}, \bar{t}_{n},\left(\operatorname{process}\left(\Delta_{i}^{\prime}, t_{i}\right)\right)_{i=1}^{n}\right)\)
        case \(Q x . \varphi\) :
            \(\Delta^{\prime} \leftarrow \operatorname{ctx}\) _quant \((\Delta, Q, x, \varphi)\)
            return build_quant \(\left(\Delta, \Delta^{\prime}, Q, x, \varphi, \operatorname{process}\left(\Delta^{\prime}, \varphi\right)\right)\)
        case let \(\bar{x}_{n} \simeq \bar{r}_{n}\) in \(t^{\prime}\) :
    \(\Delta^{\prime} \leftarrow \operatorname{ctx}\) _let \(\left(\Delta, \bar{x}_{n}, \bar{r}_{n}, t^{\prime}\right)\)
    return build_let \(\left(\Delta, \Delta^{\prime}, \bar{x}_{n}, \bar{r}_{n}, t^{\prime}, \operatorname{process}\left(\Delta^{\prime}, t^{\prime}\right)\right)\)
```

\triangleright Parameterized by a notion of context and plugin functions

Theoretical properties

\triangleright Soundness of inference rules proven through an encoding into simply typed λ-calculus

$$
\begin{gathered}
M::=\boxed{t}|\lambda x . M|\left(\lambda \bar{x}_{n} \cdot M\right) \bar{t}_{n} \\
\frac{\mathcal{D}_{1} \quad \cdots \mathcal{D}_{n}}{M \simeq N} \mathrm{R}
\end{gathered}
$$

Theoretical properties

Contributions
(P3) Proving desirable properties of rules and algorithms
\triangleright Soundness of inference rules proven through an encoding into simply typed λ-calculus

$$
\begin{gathered}
M::=\boxed{t}|\lambda x . M|\left(\lambda \bar{x}_{n} . M\right) \bar{t}_{n} \\
\frac{\mathcal{D}_{1} \quad \cdots \mathcal{D}_{n}}{M \simeq N} \mathrm{R}
\end{gathered}
$$

\triangleright Correctness of proof-producing contextual recursion algorithm
\triangleright Cost of proof production is linear and of proof checking is (almost) linear*

* assuming suitable data structures

Implementation

Proof output for veriT

Framework implemented with a proof-producing contextual recursion algorithm
\oplus fine-grained proofs for most processing transformations
\oplus No negative impact on performance
\oplus More transformations in proof producing mode
\oplus Dramatic simplification of the code base

Prototype checker in Isabelle/HOL

Maps proofs into Isabelle theorems
\oplus Judgements encoded in λ-calculus

Summary

\triangleright Centralizes manipulation of bound variables and substitutions
\triangleright Accommodates many transformations (e.g. Skolemization)
\triangleright Proof checking is (almost) linear
\triangleright Implementation and integration within veriT

Summary

\triangleright Centralizes manipulation of bound variables and substitutions
\triangleright Accommodates many transformations (e.g. Skolemization)
\triangleright Proof checking is (almost) linear
\triangleright Implementation and integration within veriT

Future work

\triangleright Support global rewritings within the framework
\triangleright Support richer logics (e.g. HOL)
\triangleright Implement proof reconstruction in Isabelle/HOL

Conclusion

\triangleright Extensible framework for handling instantiation in SMT solving
\triangleright Extensible framework for proving formula processing in SMT solving
\triangleright Successful implementations
\triangleright Publications at TACAS'17 and CADE'17, pending submission to JAR

References

Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. "veriT: An Open, Trustable and Efficient SMT-Solver". In: Proc. Conference on Automated Deduction (CADE). Ed. by Renate A. Schmidt. Vol. 5663. Lecture Notes in Computer Science. Springer, 2009, pp. 151-156.

David Detlefs, Greg Nelson, and James B. Saxe. "Simplify: A Theorem Prover for Program Checking". In: J. ACM 52.3 (2005), pp. 365-473.

Yeting Ge and Leonardo de Moura. "Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories". In:
Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and Oded Maler. Vol. 5643. Lecture Notes in Computer Science. Springer, 2009, pp. 306-320.

Liana Hadarean, Clark W. Barrett, Andrew Reynolds, Cesare Tinelli, and Morgan Deters. "Fine Grained SMT Proofs for the Theory of Fixed-Width Bit-Vectors". In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Martin Davis, Ansgar Fehnker, Annabelle Mclver, and Andrei Voronkov. Vol. 9450. Lecture Notes in Computer Science. Springer, 2015, pp. 340-355.

References

> | Guy Katz, Clark W. Barrett, Cesare Tinelli, Andrew Reynolds, and |
| :--- |
| Liana Hadarean. "Lazy proofs for DPLL(T)-based SMT solvers". In: |
| Formal Methods In Computer-Aided Design (FMCAD). Ed. by Ruzica Piskac and |
| Muralidhar Talupur. IEEE, 2016, pp. 93-100. |

Laura Kovács and Andrei Voronkov. "First-Order Theorem Proving and Vampire". English. In: Computer Aided Verification (CAV). Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 1-35.

Leonardo de Moura and Nikolaj Bjørner. "Efficient E-Matching for SMT Solvers". In: Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning. Vol. 4603. Lecture Notes in Computer Science. Springer, 2007, pp. 183-198.

Leonardo Mendonça de Moura and Nikolaj Bjørner. "Proofs and Refutations, and Z3". In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) Workshops. Ed. by Piotr Rudnicki, Geoff Sutcliffe, Boris Konev, Renate A. Schmidt, and Stephan Schulz. Vol. 418. CEUR Workshop Proceedings. CEUR-WS.org, 2008.

References

Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krsti, Morgan Deters, and Clark Barrett. "Quantifier Instantiation Techniques for Finite Model Finding in SMT". In: Proc. Conference on Automated Deduction (CADE). Ed. by Maria Paola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer, 2013, pp. 377-391.

Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. "Finding conflicting instances of quantified formulas in SMT". In:
Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014, pp. 195-202.
Stephan Schulz. "System Description: E 1.8". English. In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Ken McMillan, Aart Middeldorp, and Andrei Voronkov. Vol. 8312. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 735-743.

Geoff Sutcliffe, Jürgen Zimmer, and Stephan Schulz. "TSTP Data-Exchange Formats for Automated Theorem Proving Tools". In:
Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems. Ed. by Weixiong Zhang and Volker Sorge. Vol. 112. Frontiers in Artificial Intelligence and Applications. IOS Press, 2004, pp. 201-215.

References

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick Wischnewski. "SPASS Version 3.5". English. In: Proc. Conference on Automated Deduction (CADE). Ed. by RenateA. Schmidt. Vol. 5663. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 140-145.

