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SMT solvers are successfully used in a variety of applications, including
many verification tools
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Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

Fast semantically guided instantiation techniques

� Too many instances swamp solver

�

Ex.: ∀xyz. f(x) ' f(z)→ h(y) ' g(z)

I Select patterns {f(x), h(y), f(z)} or {f(x), h(y), g(z)}
I A ground model with 102 ground each applications for f, g, h leads

to up to 106 instantiations

I Derive instantiations that refute ground model
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Problem statement

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

B Quantifier-free solver enumerates models E ∪Q
I E is a conjunctive set of ground literals

I Q is a conjunctive set of quantified clauses

B Instantiation module generates instances from Q and adds them to E
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Heuristic instantiation

Pattern-matching of terms from Q into terms of E

No consistency check of E ∪Q
� Fast, but too many instances

EEE Instantiation moduleEasily gets out of hand!
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Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

E Goal-oriented instantiation module

∀x̄.ψ → ψσ∀x̄.ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!
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Previous work

Conflict-based instantiation [RTM14]

B Given a model E ∪Q, for some ∀x̄. ψ ∈ Q find σ s.t. E ∧ ψσ |= ⊥
B Add instance ∀x̄. ψ → ψσ to quantifier-free solver

Finding conflicting instances requires deriving σ s.t.

E |= ¬ψσ

⊕ Goal-oriented

⊕ Efficient

� Ad-hoc

� Incomplete
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Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}
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E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, finding
a substitution σ s.t. E |= Lσ

B Variant of classic (non-simultaneous) rigid E-unification

B NP-complete

NP: Solutions can be restricted to ground terms in E ∪ L
NP-hard: reduction of 3-SAT
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Congruence Closure with Free Variables (CCFV)

CCFV is a sound, complete and terminating calculus for solving E-ground
(dis)unification

⊕ Goal-oriented

⊕ (More) Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula
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Existing techniques as special cases

B Conflict-based instantiation [RTM14]

⊕ CCFV provides formal guarantees and more clear extensions

B E-matching based heuristic instantiation [DNS05; MB07]

⊕ CCFV allows to easily discard instances already entailed by E

B Model-based instantiation [GM09; RTG+13]

⊕ No need for a secondary ground SMT solver
⊕ No need to guess solutions
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Towards a theory solver for instantiation

B Model generation

B Conflict set generation

B Propagation

B Incrementality

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Congruence Closure with Free Variables
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Finding solutions σ for E |= Lσ

B Search for solutions as a series of AND-OR constraints depending on
the entailment of conditions of literals in L

B Congruence closure as a core element

I All terms inferred equal are kept in the same class
I Constraints to be entailed are normalized according to partial

solutions

B Different possibilities for building solutions are handled with branching
and backtracking
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E |= Lσ
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

f(x) ' f(z) ∧ h(y) 6' g(z)

y ' c ∧ z ' b ∧ f(x) ' f(z)

z ' b ∧ f(x) ' f(z)

f(x) ' f(b)

x ' a

>
x ' a, y ' c, z ' b

x ' b

>
x ' b, y ' c, z ' b

y ' c, z ' b

y ' c

∅
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Implementation

B Model minimisation

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

E |= f(x)σ ' t only if [t] contains some f(t′)

f →


f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t

′
n])

I Bitsets for fast checking if a symbol has applications in a
congruence class
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Implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ C

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized
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veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 30s timeout.
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Conclusions and future work

B A unifying framework for quantified formulas with equality and
uninterpreted functions

B Lifting congruence closure to accommodate free variables

B Efficient implementations in the SMT solvers CVC4 and veriT

Extensions

B Finding conflicting instances across multiple quantified formulas

E |= ¬ψ1σ ∨ · · · ∨ ¬ψnσ, ∀x̄. ψ ∈ Q

B Incrementality

B Learning-based search for solutions

B Beyond theory of equality

B Handle variables in E
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