
Congruence Closure with Free Variables

Haniel
Barbosa1

Pascal
Fontaine1

Andrew
Reynolds2

1University of Lorraine, CNRS, Inria, LORIA, Nancy, France
2University of Iowa, Iowa City, U.S.A.

TACAS 2017

2017-04-28

SMT solvers are successfully used in a variety of applications, including
many verification tools

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

Logics

Picture credit: Vijay Ganesh

Congruence Closure with Free Variables (CCFV) 1 / 17

SMT solvers are successfully used in a variety of applications, including
many verification tools

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

SAT
Solvers

Picture credit: Vijay Ganesh

Congruence Closure with Free Variables (CCFV) 1 / 17

SMT solvers are successfully used in a variety of applications, including
many verification tools

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

SMT
Solvers

Picture credit: Vijay Ganesh

Congruence Closure with Free Variables (CCFV) 1 / 17

SMT solvers are successfully used in a variety of applications, including
many verification tools

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

SMT
Solvers

with
Quantifiers

Picture credit: Vijay Ganesh

Congruence Closure with Free Variables (CCFV) 1 / 17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

Fast semantically guided instantiation techniques

� Too many instances swamp solver

�

Ex.: ∀xyz. f(x) ' f(z)→ h(y) ' g(z)

I Select patterns {f(x), h(y), f(z)} or {f(x), h(y), g(z)}
I A ground model with 102 ground each applications for f, g, h leads

to up to 106 instantiations

I Derive instantiations that refute ground model

Congruence Closure with Free Variables (CCFV) 2 / 17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

Fast semantically guided instantiation techniques

� Too many instances swamp solver

�

Ex.: ∀xyz. f(x) ' f(z)→ h(y) ' g(z)

I Select patterns {f(x), h(y), f(z)} or {f(x), h(y), g(z)}
I A ground model with 102 ground each applications for f, g, h leads

to up to 106 instantiations

I Derive instantiations that refute ground model

Congruence Closure with Free Variables (CCFV) 2 / 17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

Fast semantically guided instantiation techniques

� Too many instances swamp solver

�

Ex.: ∀xyz. f(x) ' f(z)→ h(y) ' g(z)

I Select patterns {f(x), h(y), f(z)} or {f(x), h(y), g(z)}

I A ground model with 102 ground each applications for f, g, h leads
to up to 106 instantiations

I Derive instantiations that refute ground model

Congruence Closure with Free Variables (CCFV) 2 / 17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

Fast semantically guided instantiation techniques

� Too many instances swamp solver

�

Ex.: ∀xyz. f(x) ' f(z)→ h(y) ' g(z)

I Select patterns {f(x), h(y), f(z)} or {f(x), h(y), g(z)}
I A ground model with 102 ground each applications for f, g, h leads

to up to 106 instantiations

I Derive instantiations that refute ground model

Congruence Closure with Free Variables (CCFV) 2 / 17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

Fast semantically guided instantiation techniques

� Too many instances swamp solver
� Butterfly effect

Ex.: ∀xyz. f(x) ' f(z)→ h(y) ' g(z)

I Select patterns {f(x), h(y), f(z)} or {f(x), h(y), g(z)}
I A ground model with 102 ground each applications for f, g, h leads

to up to 106 instantiations

I Derive instantiations that refute ground model

Congruence Closure with Free Variables (CCFV) 2 / 17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation
Fast semantically guided instantiation techniques

� Too many instances swamp solver Fewer, necessary instances

� Butterfly effect Reduce dependency on heuristics

Ex.: ∀xyz. f(x) ' f(z)→ h(y) ' g(z)

I Select patterns {f(x), h(y), f(z)} or {f(x), h(y), g(z)}
I A ground model with 102 ground each applications for f, g, h leads

to up to 106 instantiations

I Derive instantiations that refute ground model

Congruence Closure with Free Variables (CCFV) 2 / 17

Problem statement

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

B Quantifier-free solver enumerates models E ∪Q
I E is a conjunctive set of ground literals

I Q is a conjunctive set of quantified clauses

B Instantiation module generates instances from Q and adds them to E

Congruence Closure with Free Variables (CCFV) 3 / 17

Problem statement

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

B Quantifier-free solver enumerates models E ∪Q
I E is a conjunctive set of ground literals

I Q is a conjunctive set of quantified clauses

B Instantiation module generates instances from Q and adds them to E

Congruence Closure with Free Variables (CCFV) 3 / 17

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

No consistency check of E ∪Q
� Fast, but too many instances

EEE Instantiation moduleEasily gets out of hand!

Congruence Closure with Free Variables (CCFV) 4 / 17

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

No consistency check of E ∪Q
� Fast, but too many instances

EEE Instantiation moduleEasily gets out of hand!

Congruence Closure with Free Variables (CCFV) 4 / 17

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

No consistency check of E ∪Q
� Fast, but too many instances

EEE Instantiation moduleEasily gets out of hand!

Congruence Closure with Free Variables (CCFV) 4 / 17

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

No consistency check of E ∪Q
� Fast, but too many instances

EEE Instantiation moduleEasily gets out of hand!

Congruence Closure with Free Variables (CCFV) 4 / 17

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

No consistency check of E ∪Q
� Fast, but too many instances

EEE Instantiation moduleEasily gets out of hand!

Congruence Closure with Free Variables (CCFV) 4 / 17

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

No consistency check of E ∪Q
� Fast, but too many instances

EEE Instantiation moduleEasily gets out of hand!

Congruence Closure with Free Variables (CCFV) 4 / 17

Heuristic instantiation

Pattern-matching of terms from Q into terms of E

No consistency check of E ∪Q
� Fast, but too many instances

EEE Instantiation moduleEasily gets out of hand!

Congruence Closure with Free Variables (CCFV) 4 / 17

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

E Goal-oriented instantiation module

∀x̄.ψ → ψσ∀x̄.ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

Congruence Closure with Free Variables (CCFV) 5 / 17

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

E Goal-oriented instantiation module

∀x̄.ψ → ψσ∀x̄.ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

Congruence Closure with Free Variables (CCFV) 5 / 17

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

E Goal-oriented instantiation module

∀x̄.ψ → ψσ∀x̄.ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

Congruence Closure with Free Variables (CCFV) 5 / 17

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

E Goal-oriented instantiation module

∀x̄.ψ → ψσ∀x̄.ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

Congruence Closure with Free Variables (CCFV) 5 / 17

Goal-oriented instantiation

Check consistency of E ∪Q
⊕ Only instances refuting the current model are generated

E Goal-oriented instantiation module

∀x̄.ψ → ψσ∀x̄.ψ → ψσ

E ∧ ψσ |= ⊥

UNSAT!

Congruence Closure with Free Variables (CCFV) 5 / 17

Previous work

Conflict-based instantiation [RTM14]

B Given a model E ∪Q, for some ∀x̄. ψ ∈ Q find σ s.t. E ∧ ψσ |= ⊥
B Add instance ∀x̄. ψ → ψσ to quantifier-free solver

Finding conflicting instances requires deriving σ s.t.

E |= ¬ψσ

⊕ Goal-oriented

⊕ Efficient

� Ad-hoc

� Incomplete

Congruence Closure with Free Variables (CCFV) 6 / 17

Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

Congruence Closure with Free Variables (CCFV) 7 / 17

Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(b), g(b) 6' h(c)}, Q = {∀xyz. f(x) ' f(z)→ h(y) ' g(z)}

f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

Congruence Closure with Free Variables (CCFV) 7 / 17

Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(b), g(b) 6' h(c)}, Q = {∀xyz. f(x) ' f(z)→ h(y) ' g(z)}
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

Congruence Closure with Free Variables (CCFV) 7 / 17

Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(b), g(b) 6' h(c)}, Q = {∀xyz. f(x) ' f(z)→ h(y) ' g(z)}
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

Congruence Closure with Free Variables (CCFV) 7 / 17

Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(b), g(b) 6' h(c)}, Q = {∀xyz. f(x) ' f(z)→ h(y) ' g(z)}
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

Congruence Closure with Free Variables (CCFV) 7 / 17

Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(b), g(b) 6' h(c)}, Q = {∀xyz. f(x) ' f(z)→ h(y) ' g(z)}
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

Congruence Closure with Free Variables (CCFV) 7 / 17

Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(b), g(b) 6' h(c)}, Q = {∀xyz. f(x) ' f(z)→ h(y) ' g(z)}
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

Congruence Closure with Free Variables (CCFV) 7 / 17

Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(b), g(b) 6' h(c)}, Q = {∀xyz. f(x) ' f(z)→ h(y) ' g(z)}
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

Congruence Closure with Free Variables (CCFV) 7 / 17

Let’s look deeper into the problem

E |= ¬ψσ, for some ∀x̄. ψ ∈ Q

E = {f(a) ' f(b), g(b) 6' h(c)}, Q = {∀xyz. f(x) ' f(z)→ h(y) ' g(z)}
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

B Each literal in the right hand side delimits possible σ

I f(x) ' f(z): either x ' z or x ' a ∧ z ' b or x ' b ∧ z ' a

I h(y) 6' g(z): y ' c ∧ z ' b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c, z 7→ b}

Congruence Closure with Free Variables (CCFV) 7 / 17

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, finding
a substitution σ s.t. E |= Lσ

B Variant of classic (non-simultaneous) rigid E-unification

B NP-complete

NP: Solutions can be restricted to ground terms in E ∪ L
NP-hard: reduction of 3-SAT

Congruence Closure with Free Variables (CCFV) 8 / 17

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, finding
a substitution σ s.t. E |= Lσ

B Variant of classic (non-simultaneous) rigid E-unification

B NP-complete

NP: Solutions can be restricted to ground terms in E ∪ L
NP-hard: reduction of 3-SAT

Congruence Closure with Free Variables (CCFV) 8 / 17

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, finding
a substitution σ s.t. E |= Lσ

B Variant of classic (non-simultaneous) rigid E-unification

B NP-complete

NP: Solutions can be restricted to ground terms in E ∪ L
NP-hard: reduction of 3-SAT

Congruence Closure with Free Variables (CCFV) 8 / 17

Congruence Closure with Free Variables (CCFV)

CCFV is a sound, complete and terminating calculus for solving E-ground
(dis)unification

⊕ Goal-oriented

⊕ (More) Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula

Congruence Closure with Free Variables (CCFV) 9 / 17

Congruence Closure with Free Variables (CCFV)

CCFV is a sound, complete and terminating calculus for solving E-ground
(dis)unification

⊕ Goal-oriented

⊕ (More) Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula

Congruence Closure with Free Variables (CCFV) 9 / 17

Congruence Closure with Free Variables (CCFV)

CCFV is a sound, complete and terminating calculus for solving E-ground
(dis)unification

⊕ Goal-oriented

⊕ (More) Efficient

� Ad-hoc Versatile framework, recasting many instantiation
techniques as a CCFV problem

� Incomplete Finds all conflicting instances of a quantified formula

Congruence Closure with Free Variables (CCFV) 9 / 17

Existing techniques as special cases

B Conflict-based instantiation [RTM14]

⊕ CCFV provides formal guarantees and more clear extensions

B E-matching based heuristic instantiation [DNS05; MB07]

⊕ CCFV allows to easily discard instances already entailed by E

B Model-based instantiation [GM09; RTG+13]

⊕ No need for a secondary ground SMT solver
⊕ No need to guess solutions

Congruence Closure with Free Variables (CCFV) 10 / 17

Towards a theory solver for instantiation

B Model generation

B Conflict set generation

B Propagation

B Incrementality

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Congruence Closure with Free Variables

Congruence Closure with Free Variables (CCFV) 11 / 17

Finding solutions σ for E |= Lσ

B Search for solutions as a series of AND-OR constraints depending on
the entailment of conditions of literals in L

B Congruence closure as a core element

I All terms inferred equal are kept in the same class
I Constraints to be entailed are normalized according to partial

solutions

B Different possibilities for building solutions are handled with branching
and backtracking

Congruence Closure with Free Variables (CCFV) 12 / 17

Finding solutions σ for E |= Lσ

B Search for solutions as a series of AND-OR constraints depending on
the entailment of conditions of literals in L

B Congruence closure as a core element

I All terms inferred equal are kept in the same class
I Constraints to be entailed are normalized according to partial

solutions

B Different possibilities for building solutions are handled with branching
and backtracking

Congruence Closure with Free Variables (CCFV) 12 / 17

Finding solutions σ for E |= Lσ

B Search for solutions as a series of AND-OR constraints depending on
the entailment of conditions of literals in L

B Congruence closure as a core element

I All terms inferred equal are kept in the same class
I Constraints to be entailed are normalized according to partial

solutions

B Different possibilities for building solutions are handled with branching
and backtracking

Congruence Closure with Free Variables (CCFV) 12 / 17

E |= Lσ
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

f(x) ' f(z) ∧ h(y) 6' g(z)

y ' c ∧ z ' b ∧ f(x) ' f(z)

z ' b ∧ f(x) ' f(z)

f(x) ' f(b)

x ' a

>
x ' a, y ' c, z ' b

x ' b

>
x ' b, y ' c, z ' b

y ' c, z ' b

y ' c

∅

Congruence Closure with Free Variables (CCFV) 13 / 17

E |= Lσ
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

f(x) ' f(z) ∧ h(y) 6' g(z)

y ' c ∧ z ' b ∧ f(x) ' f(z)

z ' b ∧ f(x) ' f(z)

f(x) ' f(b)

x ' a

>
x ' a, y ' c, z ' b

x ' b

>
x ' b, y ' c, z ' b

y ' c, z ' b

y ' c

∅

Congruence Closure with Free Variables (CCFV) 13 / 17

E |= Lσ
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

f(x) ' f(z) ∧ h(y) 6' g(z)

y ' c ∧ z ' b ∧ f(x) ' f(z)

z ' b ∧ f(x) ' f(z)

f(x) ' f(b)

x ' a

>
x ' a, y ' c, z ' b

x ' b

>
x ' b, y ' c, z ' b

y ' c, z ' b

y ' c

∅

Congruence Closure with Free Variables (CCFV) 13 / 17

E |= Lσ
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

f(x) ' f(z) ∧ h(y) 6' g(z)

y ' c ∧ z ' b ∧ f(x) ' f(z)

z ' b ∧ f(x) ' f(z)

f(x) ' f(b)

x ' a

>
x ' a, y ' c, z ' b

x ' b

>
x ' b, y ' c, z ' b

y ' c, z ' b

y ' c

∅

Congruence Closure with Free Variables (CCFV) 13 / 17

E |= Lσ
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

f(x) ' f(z) ∧ h(y) 6' g(z)

y ' c ∧ z ' b ∧ f(x) ' f(z)

z ' b ∧ f(x) ' f(z)

f(x) ' f(b)

x ' a

>
x ' a, y ' c, z ' b

x ' b

>
x ' b, y ' c, z ' b

y ' c, z ' b

y ' c

∅

Congruence Closure with Free Variables (CCFV) 13 / 17

E |= Lσ
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

f(x) ' f(z) ∧ h(y) 6' g(z)

y ' c ∧ z ' b ∧ f(x) ' f(z)

z ' b ∧ f(x) ' f(z)

f(x) ' f(b)

x ' a

>
x ' a, y ' c, z ' b

x ' b

>
x ' b, y ' c, z ' b

y ' c, z ' b

y ' c

∅

Congruence Closure with Free Variables (CCFV) 13 / 17

E |= Lσ
f(a) ' f(b) ∧ g(b) 6' h(c) |= (f(x) ' f(z) ∧ h(y) 6' g(z))σ

f(x) ' f(z) ∧ h(y) 6' g(z)

y ' c ∧ z ' b ∧ f(x) ' f(z)

z ' b ∧ f(x) ' f(z)

f(x) ' f(b)

x ' a

>
x ' a, y ' c, z ' b

x ' b

>
x ' b, y ' c, z ' b

y ' c, z ' b

y ' c

∅

Congruence Closure with Free Variables (CCFV) 13 / 17

Implementation

B Model minimisation

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

E |= f(x)σ ' t only if [t] contains some f(t′)

f →

f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t

′
n])

I Bitsets for fast checking if a symbol has applications in a
congruence class

Congruence Closure with Free Variables (CCFV) 14 / 17

Implementation

B Model minimisation

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

E |= f(x)σ ' t only if [t] contains some f(t′)

f →

f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t

′
n])

I Bitsets for fast checking if a symbol has applications in a
congruence class

Congruence Closure with Free Variables (CCFV) 14 / 17

Implementation

B Model minimisation

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

E |= f(x)σ ' t only if [t] contains some f(t′)

f →

f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t

′
n])

I Bitsets for fast checking if a symbol has applications in a
congruence class

Congruence Closure with Free Variables (CCFV) 14 / 17

Implementation

B Model minimisation

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Model'

Instantiation
module

Instance

B Top symbol indexing of E-graph from ground congruence closure

E |= f(x)σ ' t only if [t] contains some f(t′)

f →

f([t1], . . . , [tn])

. . .
f([t′1], . . . , [t

′
n])

I Bitsets for fast checking if a symbol has applications in a
congruence class

Congruence Closure with Free Variables (CCFV) 14 / 17

Implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ C

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized

E |= f(t, y) ' h(z) ∧ C

I E |= f(t, y)σ ' h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ' t′

Congruence Closure with Free Variables (CCFV) 15 / 17

Implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ C

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized

E |= f(t, y) ' h(z) ∧ C

I E |= f(t, y)σ ' h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ' t′

Congruence Closure with Free Variables (CCFV) 15 / 17

Implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ C

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized

E |= f(t, y) ' h(z) ∧ C

I E |= f(t, y)σ ' h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ' t′

Congruence Closure with Free Variables (CCFV) 15 / 17

Implementation

B Selection strategies

E |= f(x, y) ' h(z) ∧ x ' t ∧ C

B Eagerly checking whether constraints can be discarded

I After assigning x to t, the remaining problem is normalized

E |= f(t, y) ' h(z) ∧ C

I E |= f(t, y)σ ' h(z)σ only if there is some f(t′, t′′) s.t.

E |= t ' t′

Congruence Closure with Free Variables (CCFV) 15 / 17

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 30s timeout.

Congruence Closure with Free Variables (CCFV) 16 / 17

Conclusions and future work

B A unifying framework for quantified formulas with equality and
uninterpreted functions

B Lifting congruence closure to accommodate free variables

B Efficient implementations in the SMT solvers CVC4 and veriT

Extensions

B Finding conflicting instances across multiple quantified formulas

E |= ¬ψ1σ ∨ · · · ∨ ¬ψnσ, ∀x̄. ψ ∈ Q

B Incrementality

B Learning-based search for solutions

B Beyond theory of equality

B Handle variables in E

Congruence Closure with Free Variables (CCFV) 17 / 17

Conclusions and future work

B A unifying framework for quantified formulas with equality and
uninterpreted functions

B Lifting congruence closure to accommodate free variables

B Efficient implementations in the SMT solvers CVC4 and veriT

Extensions

B Finding conflicting instances across multiple quantified formulas

E |= ¬ψ1σ ∨ · · · ∨ ¬ψnσ, ∀x̄. ψ ∈ Q

B Incrementality

B Learning-based search for solutions

B Beyond theory of equality

B Handle variables in E

Congruence Closure with Free Variables (CCFV) 17 / 17

Thank you

Congruence Closure with Free Variables (CCFV) 17 / 17

References

David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover for
Program Checking”. In: J. ACM 52.3 (2005), pp. 365–473.

Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified
Formulas in Satisfiabiliby Modulo Theories”. In:
Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and Oded Maler.
Vol. 5643. Lecture Notes in Computer Science. Springer, 2009, pp. 306–320.

Leonardo de Moura and Nikolaj Bjørner. “Efficient E-Matching for SMT Solvers”.
In: Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning.
Vol. 4603. Lecture Notes in Computer Science. Springer, 2007, pp. 183–198.

Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krsti, Morgan Deters, and
Clark Barrett. “Quantifier Instantiation Techniques for Finite Model Finding in
SMT”. In: Proc. Conference on Automated Deduction (CADE). Ed. by
Maria Paola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer,
2013, pp. 377–391.

Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. “Finding
conflicting instances of quantified formulas in SMT”. In:
Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014, pp. 195–202.

