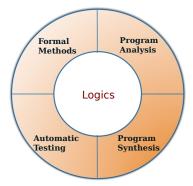
Congruence Closure with Free Variables

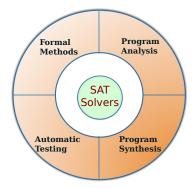
HanielPascalAndrewBarbosa1Fontaine1Reynolds2

¹University of Lorraine, CNRS, Inria, LORIA, Nancy, France ²University of Iowa, Iowa City, U.S.A.

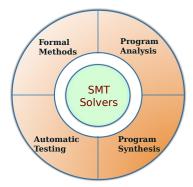
TACAS 2017 2017-04-28



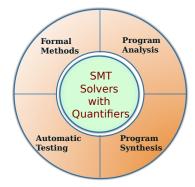
Picture credit: Vijay Ganesh



Picture credit: Vijay Ganesh



Picture credit: Vijay Ganesh



Picture credit: Vijay Ganesh

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

⊖ Too many instances swamp solver

⊖ Too many instances swamp solver

- $\mathsf{Ex.:} \ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z)$
 - ▶ Select patterns $\{f(x), h(y), f(z)\}$ or $\{f(x), h(y), g(z)\}$

⊖ Too many instances swamp solver

 $\mathsf{Ex.:} \ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z)$

- \blacktriangleright Select patterns $\{f(x),\,h(y),\,f(z)\}$ or $\{f(x),\,h(y),\,g(z)\}$
- ► A ground model with 10² ground each applications for f, g, h leads to up to 10⁶ instantiations

- ${igarrow}$ Too many instances swamp solver
- Butterfly effect

Ex.:
$$\forall xyz. \ f(x) \simeq f(z) \rightarrow h(y) \simeq g(z)$$

- \blacktriangleright Select patterns $\{f(x),\,h(y),\,f(z)\}$ or $\{f(x),\,h(y),\,g(z)\}$
- ▶ A ground model with 10^2 ground each applications for f, g, h leads to up to 10^6 instantiations

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

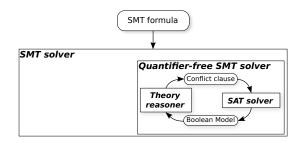
Fast semantically guided instantiation techniques

- Too many instances swamp solver Fewer, necessary instances
- Butterfly effect Reduce dependency on heuristics

$\mathsf{Ex.:} \ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z)$

- ► Select patterns $\{f(x), h(y), f(z)\}$ or $\{f(x), h(y), g(z)\}$
- ► A ground model with 10² ground each applications for f, g, h leads to up to 10⁶ instantiations
- ► Derive instantiations that refute ground model

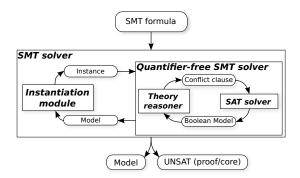
Problem statement



 \triangleright Quantifier-free solver enumerates models $E \cup Q$

- \blacktriangleright E is a conjunctive set of ground literals
- ▶ Q is a conjunctive set of quantified clauses

Problem statement



Dash Quantifier-free solver enumerates models $E\cup \mathcal{Q}$

- \blacktriangleright E is a conjunctive set of ground literals
- $\blacktriangleright \ \mathcal{Q}$ is a conjunctive set of quantified clauses

 $\,\vartriangleright\,$ Instantiation module generates instances from ${\cal Q}$ and adds them to E

Pattern-matching of terms from ${\cal Q}$ into terms of E

No consistency check of $E\cup \mathcal{Q}$

 \ominus Fast, but too many instances

Pattern-matching of terms from \mathcal{Q} into terms of E

No consistency check of $E\cup \mathcal{Q}$

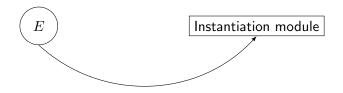
 \ominus Fast, but too many instances

Instantiation module

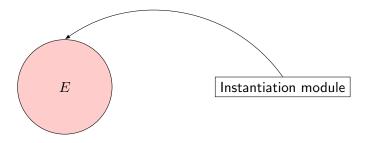
Pattern-matching of terms from \mathcal{Q} into terms of E

No consistency check of $E\cup \mathcal{Q}$

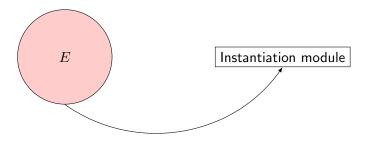
⊖ Fast, but too many instances



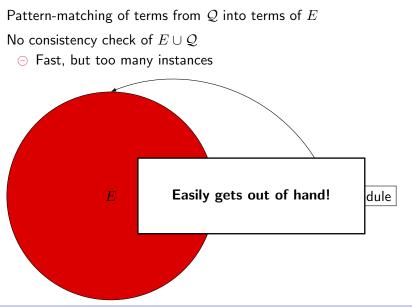
Pattern-matching of terms from Q into terms of ENo consistency check of $E \cup Q$ \bigcirc Fast, but too many instances



Pattern-matching of terms from Q into terms of ENo consistency check of $E \cup Q$ \bigcirc Fast, but too many instances



Pattern-matching of terms from Q into terms of ENo consistency check of $E \cup Q$ ⊖ Fast, but too many instances EInstantiation module



Check consistency of $E\cup \mathcal{Q}$

 $\oplus \$ Only instances refuting the current model are generated

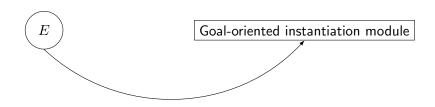
Check consistency of $E \cup \mathcal{Q}$

 $\oplus \$ Only instances refuting the current model are generated

Goal-oriented instantiation module

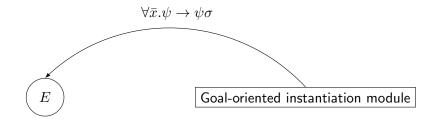
Check consistency of $E \cup \mathcal{Q}$

 $\oplus \$ Only instances refuting the current model are generated



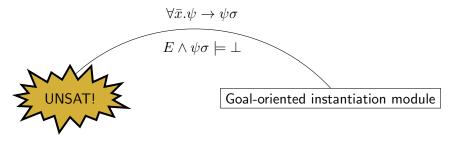
Check consistency of $E \cup \mathcal{Q}$

 $\oplus\,$ Only instances refuting the current model are generated



Check consistency of $E \cup \mathcal{Q}$

 $\oplus\,$ Only instances refuting the current model are generated



Previous work

Conflict-based instantiation

[RTM14]

- $\vartriangleright \text{ Given a model } E \cup \mathcal{Q} \text{, for some } \forall \bar{x}. \ \psi \in \mathcal{Q} \text{ find } \sigma \text{ s.t. } E \land \psi \sigma \models \bot$
- \vartriangleright Add instance $\forall \bar{x}. \ \psi \rightarrow \psi \sigma$ to quantifier-free solver

Finding conflicting instances requires deriving σ s.t.

$$E \models \neg \psi \sigma$$

- \oplus Goal-oriented
- \oplus Efficient
- Ad-hoc
- Incomplete

 $E \models \neg \psi \sigma$, for some $\forall \bar{x}. \ \psi \in \mathcal{Q}$

 $E \models \neg \psi \sigma$, for some $\forall \bar{x}. \ \psi \in \mathcal{Q}$

 $E = \{ f(a) \simeq f(b), g(b) \not\simeq h(c) \}, \mathcal{Q} = \{ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z) \}$

 $E \models \neg \psi \sigma$, for some $\forall \bar{x}. \ \psi \in \mathcal{Q}$

 $E = \{ f(a) \simeq f(b), g(b) \not\simeq h(c) \}, \ \mathcal{Q} = \{ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z) \}$ $f(a) \simeq f(b) \land g(b) \not\simeq h(c) \models (f(x) \simeq f(z) \land h(y) \not\simeq g(z)) \sigma$

 $E \models \neg \psi \sigma$, for some $\forall \bar{x}. \ \psi \in \mathcal{Q}$

 $E = \{ f(a) \simeq f(b), g(b) \not\simeq h(c) \}, \ \mathcal{Q} = \{ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z) \}$ $f(a) \simeq f(b) \land g(b) \not\simeq h(c) \models (f(x) \simeq f(z) \land h(y) \not\simeq g(z)) \sigma$

 $\vartriangleright\,$ Each literal in the right hand side delimits possible σ

 $E \models \neg \psi \sigma$, for some $\forall \bar{x}. \ \psi \in \mathcal{Q}$

 $E = \{ f(a) \simeq f(b), g(b) \not\simeq h(c) \}, \ \mathcal{Q} = \{ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z) \}$ $f(a) \simeq f(b) \land g(b) \not\simeq h(c) \models (f(x) \simeq f(z) \land h(y) \not\simeq g(z)) \sigma$

 $\,\vartriangleright\,$ Each literal in the right hand side delimits possible σ

 $\blacktriangleright \ f(x) \simeq f(z): \text{ either } x \simeq z \text{ or } x \simeq a \wedge z \simeq b \text{ or } x \simeq b \wedge z \simeq a$

 $E \models \neg \psi \sigma$, for some $\forall \bar{x}. \ \psi \in \mathcal{Q}$

 $E = \{ f(a) \simeq f(b), g(b) \not\simeq h(c) \}, \ \mathcal{Q} = \{ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z) \}$ $f(a) \simeq f(b) \land g(b) \not\simeq h(c) \models (f(x) \simeq f(z) \land h(y) \not\simeq g(z)) \sigma$

- $\,\vartriangleright\,$ Each literal in the right hand side delimits possible σ
 - $\blacktriangleright \ f(x) \simeq f(z): \text{ either } x \simeq z \text{ or } x \simeq a \wedge z \simeq b \text{ or } x \simeq b \wedge z \simeq a$
 - $\blacktriangleright \ h(y) \not\simeq g(z) \text{: } y \simeq c \wedge z \simeq b$

 $E \models \neg \psi \sigma$, for some $\forall \bar{x}. \ \psi \in \mathcal{Q}$

 $E = \{ f(a) \simeq f(b), g(b) \not\simeq h(c) \}, \ \mathcal{Q} = \{ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z) \}$ $f(a) \simeq f(b) \land g(b) \not\simeq h(c) \models (f(x) \simeq f(z) \land h(y) \not\simeq g(z)) \sigma$

- $\,\vartriangleright\,$ Each literal in the right hand side delimits possible σ
 - $\blacktriangleright \ f(x) \simeq f(z) \text{: either } \underline{x \simeq z} \text{ or } x \simeq a \wedge z \simeq b \text{ or } x \simeq b \wedge z \simeq a$

$$\blacktriangleright h(y) \not\simeq g(z): \ \underline{y \simeq c \land z \simeq b}$$

$$\sigma = \{ x \mapsto b, \, y \mapsto c, \, z \mapsto b \}$$

 $E \models \neg \psi \sigma$, for some $\forall \bar{x}. \ \psi \in \mathcal{Q}$

 $E = \{ f(a) \simeq f(b), g(b) \not\simeq h(c) \}, \ \mathcal{Q} = \{ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z) \}$ $f(a) \simeq f(b) \land g(b) \not\simeq h(c) \models (f(x) \simeq f(z) \land h(y) \not\simeq g(z)) \sigma$

- $\,\vartriangleright\,$ Each literal in the right hand side delimits possible σ
 - $\blacktriangleright \ f(x) \simeq f(z) \text{: either } x \simeq z \text{ or } \underline{x \simeq a \wedge z \simeq b} \text{ or } x \simeq b \wedge z \simeq a$

$$\blacktriangleright h(y) \not\simeq g(z): \ \underline{y \simeq c \land z \simeq b}$$

$$\sigma = \{ x \mapsto b, \, y \mapsto c, \, z \mapsto b \}$$

or

$$\sigma = \{ x \mapsto a, \, y \mapsto c, \, z \mapsto b \}$$

 $E \models \neg \psi \sigma$, for some $\forall \bar{x}. \ \psi \in \mathcal{Q}$

 $E = \{ f(a) \simeq f(b), g(b) \not\simeq h(c) \}, \ \mathcal{Q} = \{ \forall xyz. \ f(x) \simeq f(z) \to h(y) \simeq g(z) \}$ $f(a) \simeq f(b) \land g(b) \not\simeq h(c) \models (f(x) \simeq f(z) \land h(y) \not\simeq g(z)) \sigma$

- $\,\vartriangleright\,$ Each literal in the right hand side delimits possible σ
 - $f(x) \simeq f(z)$: either $x \simeq z$ or $x \simeq a \land z \simeq b$ or $\underline{x \simeq b \land z \simeq a}$

$$\blacktriangleright h(y) \not\simeq g(z): \ \underline{y \simeq c \land z \simeq b}$$

$$\sigma = \{ x \mapsto b, \, y \mapsto c, \, z \mapsto b \}$$

or

$$\sigma = \{ x \mapsto a, \, y \mapsto c, \, z \mapsto b \}$$

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, finding a substitution σ s.t. $E \models L\sigma$

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, finding a substitution σ s.t. $E \models L\sigma$

▷ Variant of classic (non-simultaneous) rigid *E*-unification

E-ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, finding a substitution σ s.t. $E \models L\sigma$

▷ Variant of classic (non-simultaneous) rigid *E*-unification

▷ NP-complete

NP: Solutions can be restricted to ground terms in $E \cup L$ NP-hard: reduction of 3-SAT

Congruence Closure with Free Variables (CCFV)

 CCFV is a sound, complete and terminating calculus for solving $E\text{-}\mathsf{ground}$ (dis)unification

Congruence Closure with Free Variables (CCFV)

 CCFV is a sound, complete and terminating calculus for solving $E\text{-}\mathsf{ground}$ (dis)unification

- \oplus Goal-oriented
- ⊕ (More) Efficient

Congruence Closure with Free Variables (CCFV)

 CCFV is a sound, complete and terminating calculus for solving $E\text{-}\mathsf{ground}$ (dis)unification

- \oplus Goal-oriented
- (More) Efficient
- Ad-hoe Versatile framework, recasting many instantiation techniques as a CCFV problem

Incomplete Finds all conflicting instances of a quantified formula

Existing techniques as special cases

 \triangleright Conflict-based instantiation [RTM14] \oplus CCFV provides formal guarantees and more clear extensions

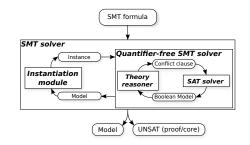
▷ Model-based instantiation

[GM09; RTG+13]

- ⊕ No need for a secondary ground SMT solver
- \oplus No need to guess solutions

Towards a theory solver for instantiation

- ▷ Model generation
- ▷ Conflict set generation
- ▷ **Propagation**
- ▷ Incrementality



Finding solutions σ for $E \models L\sigma$

 $\,\triangleright\,$ Search for solutions as a series of AND-OR constraints depending on the entailment of conditions of literals in L

Finding solutions σ for $E \models L\sigma$

- $\vartriangleright\,$ Search for solutions as a series of AND-OR constraints depending on the entailment of conditions of literals in L
- ▷ Congruence closure as a core element
 - ► All terms inferred equal are kept in the same class
 - Constraints to be entailed are normalized according to partial solutions

Finding solutions σ for $E \models L\sigma$

- $\vartriangleright\,$ Search for solutions as a series of AND-OR constraints depending on the entailment of conditions of literals in L
- ▷ Congruence closure as a core element
 - ► All terms inferred equal are kept in the same class
 - Constraints to be entailed are normalized according to partial solutions

Different possibilities for building solutions are handled with branching and backtracking

$\begin{array}{cccc} E & \models & L\sigma \\ f(a) \simeq f(b) \wedge g(b) \not\simeq h(c) & \models & (f(x) \simeq f(z) \wedge h(y) \not\simeq g(z)) \, \sigma \end{array}$

$\begin{array}{ccc} E & \models & L\sigma \\ f(a) \simeq f(b) \wedge g(b) \not\simeq h(c) & \models & (f(x) \simeq f(z) \wedge h(y) \not\simeq g(z)) \, \sigma \end{array}$

 $f(x) \simeq f(z) \wedge h(y) \not\simeq g(z)$

$\begin{array}{cccc} E & \models & L\sigma \\ f(a) \simeq f(b) \wedge g(b) \not\simeq h(c) & \models & (f(x) \simeq f(z) \wedge h(y) \not\simeq g(z)) \, \sigma \end{array}$

$$\begin{array}{c} f(x) \simeq f(z) \wedge h(y) \not \simeq g(z) \\ & \varnothing \\ \\ y \simeq c \wedge z \simeq b \wedge f(x) \simeq f(z) \end{array}$$

$$\begin{array}{ccc} E & \models & L\sigma \\ f(a) \simeq f(b) \wedge g(b) \not\simeq h(c) & \models & (f(x) \simeq f(z) \wedge h(y) \not\simeq g(z)) \, \sigma \end{array}$$

$$\begin{array}{c} f(x) \simeq f(z) \wedge h(y) \not\simeq g(z) \\ & \varnothing \\ \\ y \simeq c \wedge z \simeq b \wedge f(x) \simeq f(z) \\ & y \simeq c \\ \\ z \simeq b \wedge f(x) \simeq f(z) \end{array}$$

$$\begin{array}{cccc} E & \models & L\sigma \\ f(a) \simeq f(b) \wedge g(b) \not\simeq h(c) & \models & (f(x) \simeq f(z) \wedge h(y) \not\simeq g(z)) \, \sigma \end{array}$$

$$f(x) \simeq f(z) \wedge h(y) \neq g(z)$$

$$\otimes \mid$$

$$y \simeq c \wedge z \simeq b \wedge f(x) \simeq f(z)$$

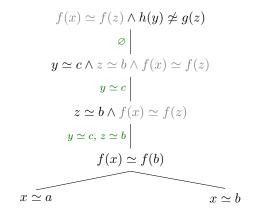
$$y \simeq c \mid$$

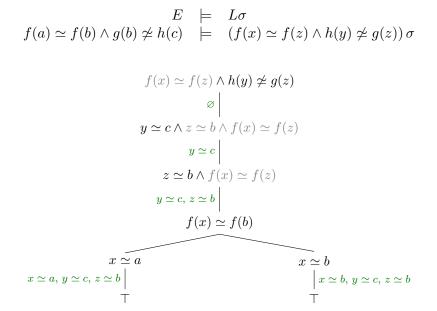
$$z \simeq b \wedge f(x) \simeq f(z)$$

$$y \simeq c, z \simeq b \mid$$

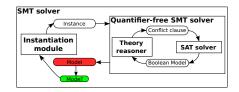
$$f(x) \simeq f(b)$$

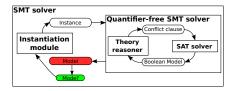
$$\begin{array}{cccc} E & \models & L\sigma \\ f(a) \simeq f(b) \wedge g(b) \not\simeq h(c) & \models & (f(x) \simeq f(z) \wedge h(y) \not\simeq g(z)) \, \sigma \end{array}$$





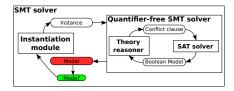
 \triangleright Model minimisation





 \vartriangleright Top symbol indexing of $E\mbox{-}{\rm graph}$ from ground congruence closure

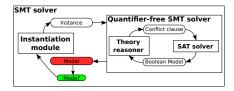
 $E \models f(x)\sigma \simeq t$ only if [t] contains some f(t')



 \vartriangleright Top symbol indexing of $E\mbox{-}{\rm graph}$ from ground congruence closure

 $E \models f(x)\sigma \simeq t$ only if [t] contains some f(t')

$$f \to \begin{cases} f([t_1], \dots, [t_n]) \\ \dots \\ f([t'_1], \dots, [t'_n]) \end{cases}$$



 \triangleright Top symbol indexing of *E*-graph from ground congruence closure

 $E \models f(x)\sigma \simeq t$ only if [t] contains some f(t')

$$f \to \begin{cases} f([t_1], \dots, [t_n]) \\ \dots \\ f([t'_1], \dots, [t'_n]) \end{cases}$$

 Bitsets for fast checking if a symbol has applications in a congruence class

Implementation

$$E \models f(x, y) \simeq h(z) \land x \simeq t \land C$$

Implementation

$$E \models f(x, y) \simeq h(z) \land \underline{x} \simeq \underline{t} \land C$$

$$E \models f(x, y) \simeq h(z) \land \underline{x} \simeq \underline{t} \land C$$

- \triangleright Eagerly checking whether constraints can be discarded
 - \blacktriangleright After assigning x to t, the remaining problem is normalized

$$E\models f(t,y)\simeq h(z)\wedge C$$

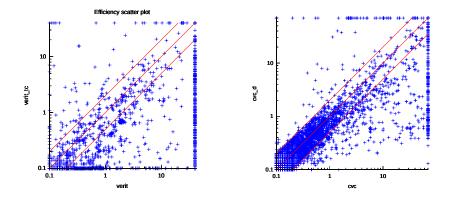
$$E \models f(x, y) \simeq h(z) \land \underline{x} \simeq \underline{t} \land C$$

- $\,\vartriangleright\,$ Eagerly checking whether constraints can be discarded
 - \blacktriangleright After assigning x to t, the remaining problem is normalized

$$E\models f(t,y)\simeq h(z)\wedge C$$

•
$$E \models f(t, y)\sigma \simeq h(z)\sigma$$
 only if there is some $f(t', t'')$ s.t.

$$E \models t \simeq t'$$



$\mathsf{veriT:}$ + 800 out of $1\,785$ unsolved problems

$\mathsf{CVC4:}+$ 200 out of 745 unsolved problems

* experiments in the "UF", "UFLIA", "UFLRA" and "UFIDL" categories of SMT-LIB, which have $10\,495$ benchmarks annotated as <u>unsatisfiable</u>, with 30s timeout.

Conclusions and future work

- A unifying framework for quantified formulas with equality and uninterpreted functions
- ▷ Lifting congruence closure to accommodate free variables
- \triangleright Efficient implementations in the SMT solvers CVC4 and veriT

Conclusions and future work

- A unifying framework for quantified formulas with equality and uninterpreted functions
- ▷ Lifting congruence closure to accommodate free variables
- Efficient implementations in the SMT solvers CVC4 and veriT

Extensions

> Finding conflicting instances across multiple quantified formulas

$$E \models \neg \psi_1 \sigma \lor \cdots \lor \neg \psi_n \sigma, \quad \forall \bar{x}. \ \psi \in \mathcal{Q}$$

- Incrementality
- Learning-based search for solutions
- Beyond theory of equality
- \triangleright Handle variables in E

Thank you

References

David Detlefs, Greg Nelson, and James B. Saxe. "Simplify: A Theorem Prover for Program Checking". In: J. ACM 52.3 (2005), pp. 365–473.

Yeting Ge and Leonardo de Moura. "Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories". In: <u>Computer Aided Verification (CAV)</u>. Ed. by Ahmed Bouajjani and Oded Maler. Vol. 5643. Lecture Notes in Computer Science. Springer, 2009, pp. 306–320.

Leonardo de Moura and Nikolaj Bjørner. "Efficient E-Matching for SMT Solvers". In: <u>Proc. Conference on Automated Deduction (CADE)</u>. Ed. by Frank Pfenning. Vol. 4603. Lecture Notes in Computer Science. Springer, 2007, pp. 183–198.

Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krsti, Morgan Deters, and Clark Barrett. "Quantifier Instantiation Techniques for Finite Model Finding in SMT". In: <u>Proc. Conference on Automated Deduction (CADE)</u>. Ed. by Maria Paola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer, 2013, pp. 377–391.

Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. "Finding conflicting instances of quantified formulas in SMT". In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014, pp. 195–202.